Source code for graphscope.nx.generators.directed

# -*- coding: utf-8 -*-
#
# This file directed.py is referred and derived from project NetworkX,
#
#  https://github.com/networkx/networkx/blob/master/networkx/generators/directed.py
#
# which has the following license:
#
# Copyright (C) 2004-2020, NetworkX Developers
# Aric Hagberg <[email protected]>
# Dan Schult <[email protected]>
# Pieter Swart <[email protected]>
# All rights reserved.
#
# This file is part of NetworkX.
#
# NetworkX is distributed under a BSD license; see LICENSE.txt for more
# information.
#
"""
Generators for some directed graphs, including growing network (GN) graphs and
scale-free graphs.

"""

from collections import Counter

import networkx as nxa
from networkx.utils import discrete_sequence
from networkx.utils import py_random_state
from networkx.utils import weighted_choice

from graphscope import nx
from graphscope.nx.generators.classic import empty_graph
from graphscope.nx.utils.compat import patch_docstring

__all__ = [
    "gn_graph",
    "gnc_graph",
    "gnr_graph",
    "random_k_out_graph",
    "scale_free_graph",
]


[docs]@patch_docstring(nxa.gn_graph) @py_random_state(3) def gn_graph(n, kernel=None, create_using=None, seed=None): G = empty_graph(1, create_using, default=nx.DiGraph) if not G.is_directed(): raise nx.NetworkXError("create_using must indicate a Directed Graph") if kernel is None: def kernel(x): return x if n == 1: return G G.add_edge(1, 0) # get started ds = [1, 1] # degree sequence for source in range(2, n): # compute distribution from kernel and degree dist = [kernel(d) for d in ds] # choose target from discrete distribution target = discrete_sequence(1, distribution=dist, seed=seed)[0] G.add_edge(source, target) ds.append(1) # the source has only one link (degree one) ds[target] += 1 # add one to the target link degree return G
[docs]@patch_docstring(nxa.gnr_graph) @py_random_state(3) def gnr_graph(n, p, create_using=None, seed=None): G = empty_graph(1, create_using, default=nx.DiGraph) if not G.is_directed(): raise nx.NetworkXError("create_using must indicate a Directed Graph") if n == 1: return G for source in range(1, n): target = seed.randrange(0, source) if seed.random() < p and target != 0: target = next(G.successors(target)) G.add_edge(source, target) return G
[docs]@patch_docstring(nxa.gnc_graph) @py_random_state(2) def gnc_graph(n, create_using=None, seed=None): G = empty_graph(1, create_using, default=nx.DiGraph) if not G.is_directed(): raise nx.NetworkXError("create_using must indicate a Directed Graph") if n == 1: return G for source in range(1, n): target = seed.randrange(0, source) for succ in G.successors(target): G.add_edge(source, succ) G.add_edge(source, target) return G
[docs]@patch_docstring(nxa.scale_free_graph) @py_random_state(7) def scale_free_graph( n, alpha=0.41, beta=0.54, gamma=0.05, delta_in=0.2, delta_out=0, create_using=None, seed=None, ): def _choose_node(G, distribution, delta, psum): cumsum = 0.0 # normalization r = seed.random() for n, d in distribution: cumsum += (d + delta) / psum if r < cumsum: break return n if create_using is None or not hasattr(create_using, "_adj"): # start with 3-cycle G = nx.empty_graph(3, create_using, default=nx.MultiDiGraph) G.add_edges_from([(0, 1), (1, 2), (2, 0)]) else: G = create_using if not (G.is_directed() and G.is_multigraph()): raise nx.NetworkXError("MultiDiGraph required in create_using") if alpha <= 0: raise ValueError("alpha must be > 0.") if beta <= 0: raise ValueError("beta must be > 0.") if gamma <= 0: raise ValueError("gamma must be > 0.") if abs(alpha + beta + gamma - 1.0) >= 1e-9: raise ValueError("alpha+beta+gamma must equal 1.") number_of_edges = G.number_of_edges() while len(G) < n: psum_in = number_of_edges + delta_in * len(G) psum_out = number_of_edges + delta_out * len(G) r = seed.random() # random choice in alpha,beta,gamma ranges if r < alpha: # alpha # add new node v v = len(G) # choose w according to in-degree and delta_in w = _choose_node(G, G.in_degree(), delta_in, psum_in) elif r < alpha + beta: # beta # choose v according to out-degree and delta_out v = _choose_node(G, G.out_degree(), delta_out, psum_out) # choose w according to in-degree and delta_in w = _choose_node(G, G.in_degree(), delta_in, psum_in) else: # gamma # choose v according to out-degree and delta_out v = _choose_node(G, G.out_degree(), delta_out, psum_out) # add new node w w = len(G) G.add_edge(v, w) number_of_edges += 1 return G
@py_random_state(4) def random_uniform_k_out_graph(n, k, self_loops=True, with_replacement=True, seed=None): """Returns a random `k`-out graph with uniform attachment. A random `k`-out graph with uniform attachment is a multidigraph generated by the following algorithm. For each node *u*, choose `k` nodes *v* uniformly at random (with replacement). Add a directed edge joining *u* to *v*. Parameters ---------- n : int The number of nodes in the returned graph. k : int The out-degree of each node in the returned graph. self_loops : bool If True, self-loops are allowed when generating the graph. with_replacement : bool If True, neighbors are chosen with replacement and the returned graph will be a directed multigraph. Otherwise, neighbors are chosen without replacement and the returned graph will be a directed graph. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Returns ------- NetworkX graph A `k`-out-regular directed graph generated according to the above algorithm. It will be a multigraph if and only if `with_replacement` is True. Raises ------ ValueError If `with_replacement` is False and `k` is greater than `n`. See also -------- random_k_out_graph Notes ----- The return digraph or multidigraph may not be strongly connected, or even weakly connected. If `with_replacement` is True, this function is similar to :func:`random_k_out_graph`, if that function had parameter `alpha` set to positive infinity. """ if with_replacement: create_using = nx.MultiDiGraph() def sample(v, nodes): if not self_loops: nodes = nodes - {v} return (seed.choice(list(nodes)) for i in range(k)) else: create_using = nx.DiGraph() def sample(v, nodes): if not self_loops: nodes = nodes - {v} return seed.sample(nodes, k) G = nx.empty_graph(n, create_using) nodes = set(G) for u in G: G.add_edges_from((u, v) for v in sample(u, nodes)) return G
[docs]@patch_docstring(nxa.random_k_out_graph) @py_random_state(4) def random_k_out_graph(n, k, alpha, self_loops=True, seed=None): if alpha < 0: raise ValueError("alpha must be positive") G = nx.empty_graph(n, create_using=nx.MultiDiGraph) weights = Counter({v: alpha for v in G}) for i in range(k * n): u = seed.choice([v for v, d in G.out_degree() if d < k]) # If self-loops are not allowed, make the source node `u` have # weight zero. if not self_loops: adjustment = Counter({u: weights[u]}) else: adjustment = Counter() v = weighted_choice(weights - adjustment, seed=seed) G.add_edge(u, v) weights[v] += 1 return G