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Abstract—As a result of decades of studies, a broad spectrum
of graph algorithms have been developed for graph analytics,
including clustering, centrality, traversal, matching, mining, etc.
However, the majority of recent graph processing frameworks
only focus on a handful of fix-point graph algorithms such as
breadth-first search, PageRank, shortest path, etc. It leaves the
distributed computation of a large variety of graph algorithms
suffering from low efficiency, limited expressiveness, or high
implementation complexity with existing frameworks.

In this paper, we propose FLASH, a framework for program-
ming distributed graph processing algorithms, which achieves
good expressiveness, productivity and efficiency at the same
time. Thanks to its high-level interface, FLASH allows users
to implement complex distributed graph algorithms with high
performance with only a few lines of code. We have implemented
72 graph algorithms for 49 different problems in FLASH. In
further evaluations, we found that FLASH beats other state-of-
the-art graph processing frameworks with the speedups of up to
2 orders of magnitudes while takes up to 92% less lines of code.

Index Terms—Graph computing, Programming model, Dis-
tributed computing, Code generation

I. INTRODUCTION
Graph algorithms serve as the essential building blocks for

a diverse variety of real-world applications such as social
network analytics [2], data mining [3], network routing [4],
and scientific computing [5]. As the graph data becomes
increasingly huge, there is an urgent need of scaling graph
algorithms in the distributed context, and many distributed
graph frameworks have emerged to fill in the gap, such
as Pregel [6], Giraph [7], GraphLab [8], PowerGraph [9],
GraphX [10], Gemini [11] and others [12], [13], [14], [15],
[16]. However, as pointed out by [17], all these graph process-
ing frameworks are only evaluated via a handful of specific
graph algorithms that are similar in computation patterns. Such
evaluation is far from sufficient lacking in the coverage of
diversity and usability required from real-world applications.
To comprehensively evaluate a distributed graph framework,
we carefully consider three metrics that we call EPE, namely
expressiveness, productivity and efficiency. Specifically,
• Expressiveness represents the capability of the program-

ming interface to express different kinds of graph al-
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gorithms. Expressiveness is arguably the most important
metric that must be fulfilled in order to support the diverse
graph applications in practice.

• Productivity shows the convenience of the interface or the
required effort for users to implement their algorithms,
which is also important given that otherwise graph com-
putation will be a privilege to a few expertise [16].

• Efficiency refers to the performance factor of executing
graph algorithms, which should be concerned because
real-world applications on large-scale graphs are often
time-consuming and/or memory-intensive.

After thoroughly analyzing existing graph processing frame-
works, we find out that none of them has arrived at the proper
tradeoff for all the EPE metrics. To pursuit productivity, an
abstraction called “thinking like a vertex” (or vertex-centric)
was proposed in Pregel [6], and shared among many existing
graph processing frameworks. Under this philosophy, graphs
are divided into partitions for scalability and updates are
bound to the granularity of vertices for parallelization. The
vertex-centric implementation of a graph algorithm follows a
common iterative, single-phased and value-propagation-based
(short of ISVP) pattern [17]: the algorithm runs iteratively
until convergence, and in each iteration, all vertices receive
messages from their neighbors to update their own states, then
they send the updated states as messages to the neighbors
for the next iteration. Due to the productivity of the vertex-
centric model, a lot of graph frameworks follow the philosophy
for their abstraction, including the GraphLab variant [8], the
Scatter-Gather model [18], and the GAS model [9].

Such high-level abstraction brings productivity to some
extent to users, however, at the sacrifice of expressiveness
and efficiency. Regarding expressiveness, we argue that the
abstraction, while designed specifically for the ISVP algo-
rithms, is almost infeasible to be applied to a large variety
of algorithms that are not of the kind, such as K-clique
Counting, Rectangle Counting, Betweenness Centrality and
the optimized Connected Components algorithm [19], to just
name a few. Actually, there are typically tens of algorithms
available to representative graph processing frameworks. As a
comparison, NetworkX [20], a Python graph library, supports
over 328 graph algorithms. At the same time, modern graph
scenarios bring in the needs of more advanced and complex



graph algorithms, which poses a big challenge for existing
graph processing frameworks. After investigating representa-
tive distributed graph algorithms, including many non-ISVP
ones, we have distilled three requirements that are critical for
programming them efficiently and productively in a distributed
context, namely (R1) flexible control flow; (R2) operations on
vertex sets; and (R3) beyond-neighborhood communication.
As examples, Table I lists what requirements are needed by the
evaluated algorithms (more algorithms can be found in [1]).
However, existing graph frameworks all fall short in meeting
these requirements. For example, Pregel does not offer R1
and R2, while GAS fails to support all three requirements.
Ligra [21], [22] is the programming model that has fulfilled
the most requirements so far (R1 and R2). However, Ligra still
has limitations for expressing non-ISVP algorithms because
of the absence of R3. In addition, it is built upon a shared-
memory architecture, thus not suitable for programming graph
algorithms in a distributed context.

Regarding efficiency, it’s not surprising that some hard-
coded algorithms can run much faster than the high-level
alternative implementation on a framework. The general graph
frameworks, especially distributed frameworks lose efficiency
because of communication/synchronization overhead, load bal-
ance issues and higher software complexities [11]. As we eval-
uated, a hardcoded algorithm for Connected Components [19]
can perform orders of magnitude faster than the vertex-centric
counterparts. To overturn the efficiency issue, Gemini [11]
has been developed that significantly lower the latency of
executing certain algorithms. However, the user is often re-
quired to program more codes compared to the vertex-centric
alternatives, which harms the productivity to some degree.
Moreover, in order to exploit the extreme efficiency, some
constraints are enforced by Gemini that can deteriorate the
expressiveness: it does not support the above three critical
requirements, and it requires the vertex property to be fixed-
length and the core computation to satisfy the associative
and commutative properties. Obviously, a graph framework
based on the low-level interfaces such as MPI can provide the
optimal result for expressiveness and efficiency, but it may not
be appealing to the users in terms of productivity.

Motivated by this, we propose a new distributed graph
processing framework called FLASH in this paper, and claim
that FLASH finally approaches a sweet spot for all EPE
metrics. We base the FLASH programming model on Ligra to
inherit its support for the requirements of flexible control flow
and operations on vertex sets. By further enabling beyond-
neighborhood communication, FLASH improves the expres-
siveness for programming a diverse variety of distributed graph
algorithms. Note that Ligra is a single-machine parallel library,
and our extension of Ligra to the distributed context is non-
trivial, for which we must carefully handle communication,
synchronization, data races and task scheduling. To do so,
we propose a middleware called FLASHWARE that hides all
the above details for distribution, and provides the capability
to apply multiple system optimizations automatically and
adaptively at the runtime. In fact, we have implemented 72

TABLE I: Comparison of different models.

Algo. [20] Pregel GAS Gemini Ligra FLASH

Expressiveness & Productivity [LLoCs [27], lower is better]

CC-basic 30 36 50 26 12
CC-opt13 63 56
BFS 22 25 56 20 13
BC12 49 162 139 75 33
MIS2 48 53 112 37 23
MM-basic 57 66 98 59 20
MM-opt13 84 27
KC1 35 32 45 20
TC 31 181 38 22
GC 48 58 24
SCC12 275 74
BCC123 1057 77
LPA 51 46 26
MSF13 208 24

The algorithms are demonstrated in the full version [1].
The three critical requirements are: flexible control flow1, operations on
vertex sets2 and beyond-neighborhood communication3.

means that it is well-supported; means that we failed to express it;
means that it could be implemented in a non-intuitively way at the cost

of performance.

graph algorithms in FLASH for 49 different commonly used
applications. Among them, some algorithms are extremely
difficult or nearly impossible to implement on existing graph
processing frameworks, including the optimized algorithm to
compute minimum spanning tree [19], faster betweenness
centrality algorithm [23], k-core decomposition [24], graph
coloring [25], k-clique counting [26], to just name a few.
Moreover, thanks to FLASHWARE, we can now program much
more succinct codes using the FLASH programming interfaces,
which also helps productivity. Table I summarizes the com-
parison in expressiveness and productivity of FLASH and the
representative graph frameworks, while Figure 1 presents the
comparison in efficiency. No a single framework can beat
FLASH in all metrics, while FLASH does outperform Pregel+
and PowerGraph by a large margin in all aspects.

In summary, we make the following contributions.
(1). We propose the FLASH model, a novel high-level ab-
straction for programming distributed graph algorithms (Sec-
tion III). We define its succinct interface after presenting some
preliminaries (Section II), and show its expressiveness through
some representative examples. We also make a comparison
with other models to highlight FLASH’s advantages.
(2). We provide an efficient implementation of FLASH (Sec-
tion IV) based on a novel design of the system architecture
and a middleware named FLASHWARE. Moreover, we explore
adaptive runtime choices to further enhance the performance.
(3). We provide a thorough experimental evaluation of FLASH
considering the EPE metrics (Section V). The results demon-
strate FLASH’s capability of expressing many advanced al-
gorithms, while providing a satisfactory performance at the
same time. It beats other state-of-the-art frameworks in 84.5%
cases, and may achieve significant speedups of up to 2 orders
of magnitudes while takes up to 92% less lines of code.



OR TW US EU UK SK
CC 1 1 1 1 1.2 1.7 
BFS 1 2.7 1 1 2.1 3.1 
BC 1 1.4 1 1 1.8 1.6 
MIS 1 1 1 1 1 1 
MM 1 1 1 1 1 1 
KC 1 1 1 1 1 1 
TC 1 1 1.9 4.3 1 1 
GC 1 1 1 1.2 1 1 
SCC 1 1 1 1 1 1 
BCC 1 1 1 1 1 1 
LPA 1 1 1 1 1 1 
MSF 1 1 1.2 1.1 1 1 OR TW US EU UK SK

CC 1 1.6 10.4 8.7 1 1 
BFS 1 1 20.0 10.1 1 1 
BC 1.5 2.7 24.3 7.5 1 1 
MIS 5.2 4.5 1.2 10.1 2.7 1.8 
MM 39.9 1.2 9.5 25.8 
KC 75.1 44.9 7.6 18.7 107 83.8 
TC 3.9 1 1 2.0 

OR TW US EU UK SK
CC 2.6 1.3 16.9 17.0 1.6 1.4 
BFS 2.5 2.0 42.6 28.7 2.6 1.8 
BC 3.2 1 59.5 22.1 2.9 1.1 
MIS 3.5 1 4.2 15.5 11.2 2.6 
MM 22.3 2.3 13.2 54.3 

OR TW US EU UK SK
CC 11.1 44.2 59.2 88.3 12.6 75.5 
BFS 17.9 21.1 124 88.5 14.2 18.7 
BC 24.8 14.9 181 18.3 18.0 
MIS 24.1 38.6 24.0 59.5 35.9 21.2 
MM 21.7 80.7 
KC 283 32.5 60.8 499 
TC 8.4 14.7 11.4 20.6 2.5 3.0 
GC 1.4 1.6 5.5 1 1 2.1 
LPA 9.3 14.3 17.7 10.8 27.1 

OR TW US EU UK SK
CC 19.2 15.6 14.1 22.8 16.1 32.7 
BFS 8.8 13.8 16.7 20.6 5.4 15.3 
BC 20.8 13.5 30.5 23.0 10.4 16.4 
MIS 22.0 12.1 4.8 21.0 7.7 15.1 
MM 4.3 22.4 
KC 168 169 110 544 
TC 160 31.4 61.4 
GC 4.3 5.5 62.2 
SCC 97.4 68.8 12.5 18.7 40.2 73.1 
BCC 54.6 47.7 22.7 38.6 54.2 
MSF 8.0 12.0 1 1 1.9 5.5 
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Fig. 1: A heat map of slowdowns of various frameworks compared to the fastest framework for 12 representative applications
on 6 real-world graphs. “failed” means that the execution did not terminate within 5000s or failed due to exhausted memory.

II. PRELIMINARIES AND RELATED WORK

We first define some basic graph notations and discuss the
mainstream programming models of existing frameworks.

Functions. FLASH uses the functional programming
paradigm. A variable with a type is denoted as var : type. A
function f(x : X) 7→ Y means that for each input x ∈ X , it
has an output y ∈ Y such that f(x) = y.

Graphs. FLASH is defined over the property graph, which
can be represented as G = (V,E). V represents a finite set of
vertices, and each v ∈ V has a unique identifier (v.id ∈ N)
and some associated properties. With the cartesian product of
sets A and B denoted by A×B where A×B = {(a, b) : a ∈
A ∧ b ∈ B}, E ⊆ V × V represents a set of (directed) edges.
For each edge (s, d), the first vertex s is the source of it and
the second vertex d is the target. The number of vertices in a
graph is denoted by |V | and the number of edges is denoted
by |E|. We denote a weighted graph by G = (V,E,w), where
w is a function which maps an edge to a real value, thus each
edge e ∈ E is associated with the weight w(e).

Graphs partitions. In a distributed cluster containing m
workers, the input graph will be partitioned into m partitions
(also called subgraphs), with each worker holding one of the
partitions (Pi = (Vi, Ei) for worker i). A m-way partition
scheme for the graph G(V,E) should guarantee that V =
∪mi=1Vi and E = ∪mi=1Ei. There are two main schemes for
partitioning the graph, namely edge-cut and vertex-cut, and
we use edge-cut which is more common in existing works.
To be specific, each vertex belongs to only one partition, so
that Vi ∩ Vj = ∅, for i 6= j. Two endpoints of an edge may
belong to different partitions. To this end, FLASH uses the
master-mirror notion as PowerGraph [9] proposed: each vertex
is assigned to and owned by one partition, where it is a master,
as its primary copy. While in other partitions, there may also

be replicas for this vertex, called mirrors. We will explain this
more specifically in Section IV.

Graph algorithms. A graph algorithm takes a graph G as
input, does processing and analytics on it to solve real-world
problems. As assumed in many works, a graph algorithm
updates the information stored in vertices, while edges are
viewed as immutable objects. Generally, A graph algorithm
propagates updates along the edges (original edges of G,
or virtual edges generated dynamically during the execution)
iteratively, until the convergence condition is met or a given
number of iterations are completed. Vertices with ongoing
updates are called active vertices (or frontiers), with outgoing
edges from them called active edges. This paper considers
the Bulk Synchronous Parallel (BSP) model [28], where an
algorithm consists of a series of supersteps. In each superstep,
computation and communication (message passing) take place
on active vertices. The supersteps are executed synchronously,
so that messages sent during one superstep are guaranteed to
be delivered in the beginning of the next superstep.

Pregel. There are many parallel programming abstractions for
processing large graphs [29], [30], [17]. Pregel [6] proposed
a vertex-centric abstraction which is designed based on the
BSP model. By distributing vertices and associated adjacent
edges to each worker, the Pregel framework has fixed routines
for all the algorithms. In each superstep, a Pregel program
calls the compute() on each vertex, which performs the pre-
defined user-specific computation. During the compute(),
each vertex processes the incoming messages from the pre-
vious superstep, then sends messages to other vertices. The
communication is based on message-passing, with messages
can be aggregated if the user provides a combine() function.
The early-aggregation of messages can reduce the number of
messages to be materialized, thus improves the performance



and reduces the memory usage. The Pregel model greatly
simplifies the parallel graph algorithms. Therefore, it almost
becomes a standard of large graph processing, followed by
many graph processing frameworks [7], [13], [12], [10], [11].

However, the Pregel model only exposes a single vertex
to the users, and thus lacks in the global perspective, for
example, to maintain a group of specific vertices. Additionally,
the loop control flow is constrained by the model, making it
only suitable for single-phased algorithms. As an example, the
Betweenness Centrality algorithm [23] requires both flexible
control flow (e.g. recursive loop) and operating on frontiers
as vertex sets in each step, which cannot be easily expressed
by this model. Actually, the implementation of it provided
by [11] needs more than 400 lines of code in total. Following
this vertex-centric philosophy, FLASH makes an improvement
on the expressiveness by allowing the users to define flexible
control flow and materialize vertex sets to operate upon.
GAS. GraphLab [8] and PowerGraph [9] are also based on the
vertex-centric abstraction. They proposed the “Gather-Apply-
Scatter” (GAS) model to further simplify the graph algorithms,
but at the cost of limiting the data-exchange to only happen be-
tween adjacent vertices. GAS hides the communication details
from programmers, and the users only have the view of each
vertex and its neighbors, which means that the control flow of
a graph algorithm is highly rigid. Thus, GAS is less expressive
but more effortless than Pregel. In addition to supporting
flexible control flow and operating on arbitrary vertex sets,
FLASH removes the between-neighborhood limitation of GAS
to support the communication beyond neighbors.
Ligra. Ligra [21] proposed a new model that supports a
vertexSubset type. It represents a subset of vertices U ⊆ V
of the graph G. Based on this data structure, it is easy to
apply the update logics on any subset of vertices every time.
It exposes the control flow to the users, supporting arbitrary
combination of these operations during the execution. Ligra
is proved to be useful when programming a wide variety of
parallel graph algorithms in the shared-memory environment.

Nevertheless, Ligra is still limited in some aspects. Since the
communication is through the EDGEMAP interface, only the
messages along the edges are possible. However, communica-
tion beyond neighborhood or along a set of specific edges is
an important feature in some advanced graph algorithms [19].
And Ligra is designed for shared-memory systems, thus lacks
the distributed semantics. It requires the programmers to
use low-level instructions (e.g., the compare-and-swap in-
struction), which are not fitted in the distributed scenario.
By extending Ligra’s model, FLASH is more expressive that
supports communicating beyond neighbors. More importantly,
FLASH does not depend on the shared-memory architecture,
making it suitable for distributed processing.

III. PROGRAMMING MODEL
As depicted in Section II, previous frameworks fail to

achieve the EPE metrics due to fixed control flow, lack of view
on arbitrary vertex subsets, neighborhood-exchange limitation
and the dependence on the shared-memory architecture. To

address the challenges, we propose the FLASH programming
model by making a sufficient extension to Ligra since Ligra
addressed the first two challenges. In this section, we first
show the interface of FLASH, and how to flexibly express
graph algorithms with the given primitives. Then we show
that our FLASH model can be fully compatible with the
well-known vertex-centric models. Finally, we highlight some
characteristics of FLASH to show its advantages.

A. Interface
FLASH is a functional programming model specific for

distributed graph processing. It follows the Bulk Synchronous
Parallel (BSP) computing paradigm [28], with each of the
primary functions (SIZE, VERTEXMAP and EDGEMAP) con-
stitutes a single superstep. We made the interface of FLASH
much similar to Ligra’s, therefore, it is easy to port a program
written in Ligra to our model. The vertexSubset type represents
a set of vertices of the graph G, which only contains a set
of integers, representing the vertex id for each vertex in this
set. The associated properties of vertices are maintained only
once for a graph, shared by all vertexSubsets. The following
describes the APIs of FLASH based on this type.
(1). SIZE(U : vertexSubset) 7→ N

This function returns the size of a vertexSubset, i.e., |U |.
(2). VERTEXMAP(U : vertexSubset,

F (v : vertex) 7→ bool,
M(v : vertex) 7→ vertex) 7→ vertexSubset

The VERTEXMAP interface applies the map function M to
each vertex in U that passes the condition checking function
F . The ids of the output vertices form the resulting vertex-
Subset. That is to say, we have:
Out = {v.id|v.id ∈ U ∧ F (v) = true}
vnew =M(v), v.id ∈ U ∧ F (v) = true
This function is used to conduct local updates. Specially,

the M function could be omitted for implementing the filter
semantics, with the vertex data unchanged. The execution of
VERTEXMAP on each vertex is independent, thus it can run
in parallel naturally, as shown in Algorithm 1.
(3). EDGEMAP(U : vertexSubset,

H : edgeSet,
F (s : vertex, d : vertex) 7→ bool,
M(s : vertex, d : vertex) 7→ vertex,
C(v : vertex) 7→ bool,
R(t : veretex, d : vertex) 7→ vertex) 7→ vertexSubset

The EDGEMAP interface in Ligra is used to transfer mes-
sages between neighbor vertices. We extend and redefine
this interface for stronger expressiveness and the support for
distributed semantics. For a graph G = (V,E), EDGEMAP

Algorithm 1 VERTEXMAP

1: function VERTEXMAP(U, F, M)
2: Out = {}
3: parfor u.id ∈ U do
4: if (F (u) == true) then
5: unew = M(u)
6: Add u.id to Out
7: return Out



applies the update logic to the specific edges with source
vertex in U and target vertex satisfying C. H represents the
edge set to conduct updates, which is E in common cases.
We allow the users to define arbitrary edge sets they want
dynamically at runtime, even virtual edges generated during
the algorithm’s execution. The edge set can be defined through
defining a function which maps a source vertex id to a set of
ids of the targets. We also provide some pre-defined operators
for convenience, such as reverse edges (reverse(E)), two-
hop neighbors (join(E, E)), or edges with targets in U
(join(E, U)). This extension makes the communication
beyond the neighborhood-exchange limitation.

If a chosen edge passes the condition checking (F ), the
map function M is applied on it. The output of the function
M represents a temporary new value of the target vertex. This
new value is applied immediately and sequentially if it is in
the pull mode, while in the push mode, another parameter R
is required to apply all the temporary new values on a specific
vertex to get its final value. It is unnecessary in the Ligra’s API
because it is a shared-memory framework, which uses atomic
operations to ensure consistency. On the contrary, the FLASH
model is designed for distributed systems, so we use a reduce
function R, which takes an old value and a new value for a
single vertex, and reduces them to output the updated state.
The updated target vertices form the output set of EDGEMAP.
The reduce function R should be associative and commutative
to ensure correctness, or R is not required for sequentially
applying M , i.e., to run EDGEMAP always in the pull mode,
as we will explained in Section III-C.

More precisely, the active edge set is defined as:
Ea = {(s, d) ∈ H|s.id ∈ U ∧ C(d) = true}.

Then, F and M are applied to each element in Ea. If it is in
the pull mode:
dnew =M(s, dnew), (s, d) ∈ Ea ∧ F (s, dnew) = true.

Or, in the push mode:
T = {M(s, d)|(s, d) ∈ Ea ∧ F (s, d) = true},
dnew = R(..., R(T d2 , R(T

d
1 , d))), T

d
i ∈ T ∧ T di .id = d.id.

And the ids of the updated targets form output set:
Out = {d.id|(s, d) ∈ Ea ∧ F (s, d) = true}.
The function C is useful in algorithms where a value associ-

ated with a vertex only needs to be updated once. We retain the
default function used by Ligra (CTURE) which always returns
true, since the user does not need this functionality sometimes.
Similarly, the F function of EDGEMAP and VERTEXMAP can
also be supplied using CTURE, if it is unnecessary.
The auxiliary operators. Other auxiliary APIs are provided
by FLASH for conveniently conducting set operations, includ-
ing UNION, MINUS, INTERSACT, ADD, CONTAIN and so on.

B. Examples
To demonstrate the usage of FLASH and display its ability

to express graph algorithms, we show two representative ex-
amples. Please refer to the full version [1] for more examples.
Breadth First Search (BFS). As with standard parallel BFS
algorithms [31], [32], we implement BFS in FLASH, as shown
in Algorithm 2. For each vertex, a property named dis is

Algorithm 2 BREADTH-FIRST SEARCH

1: function INIT(v, root):
2: v.dis = (v.id == root?0 : INF )
3: return v
4: function FILTER(v, root): return v.id == root

5: function UPDATE(s, d):
6: d.dis = s.dis+ 1
7: return d
8: function COND(v): return v.dis == INF

9: function REDUCE(t, d): return t

10:
11: U = VERTEXMAP(V , CTRUE, INIT.bind(0)) . initialize
12: U = VERTEXMAP(V , FILTER.bind(0)) . root=0
13: while SIZE(U) 6= 0 do
14: U = EDGEMAP(U,E, CTRUE, UPDATE, COND, REDUCE)

created and initialized to represent the distance from the root
to this vertex. On each iteration/superstep i (starting from 0),
the frontier Ui contains all vertices reachable from the root
in i hops (v.dis = i, ∀v ∈ Ui). At the beginning of the
algorithm, a vertexSubset that only contains the root is created,
representing the frontier. To use a global variable such as r in a
local function, we provide a bind operator to supply additional
input parameters (line 11). In each of the following supersteps,
the EDGEMAP function is applied on outgoing edges of the
frontier, to check if any neighbor d of an active vertex s is
visited. If d has not been visited, updates it and then adds it to
the next frontier. The COND function tells EDGEMAP to only
consider the neighbors not been visited. Although it could be
replaced by CTRUE, we provide it for efficiency. As dis for a
vertex d is ensured to be same no matter it is updated by which
neighbor in the same superstep, we can simply remain any new
value for it in the REDUCE function. The iterative execution
will terminate when there are no vertices in the frontier, means
that all reachable vertices from the root have been visited.

Betweenness Centrality (BC). The betweenness centrality
index [33] is useful in social network analysis and has been
well studied. Precisely, the betweenness centrality of a vertex
v, denoted by CB(v), is equal to

∑
s6=v 6=t∈V δst(v). The pair-

dependency δst(v) is calculated by σst(v)
σst

, where σst is the
number of shortest paths from s to t, and σst(v) is the number
of shortest paths from s to t that pass through v. To compute
it, [23] proposed an optimized algorithm.

This algorithm works in two phases, the first phase uses a
BFS-like procedure to calculate the number of shortest paths
from r to each vertex, and the second phase computes the
dependency scores through a backward propagation. Since the
frontiers visited in every step of the first phase need to be
tracked, it is difficult to directly implement this algorithm
in a traditional vertex-centric model which does not supply
a vertexSubset structure. In contrast, its implementation in
FLASH is intuitively, as Algorithm 3 shows. In the second
phase, the edges are need to point in the reverse direction, so
we define the edge set for the EDGEMAP to be reverse(E).

C. Advantages of FLASH

Expressing other programming models. FLASH has the
ability to simulate the traditional vertex-centric models. So



Algorithm 3 BETWEENNESS CENTRALITY

1: function INIT(v, r):
2: if (v.id == r) then v.level = 0, v.num = 1, v.b = 0
3: else v.level = −1, v.num = 0, v.b = 0

4: return v
5: function FILTER(v, r): return v.id == r

6:
7: function UPDATE1(s, d):
8: d.num = d.num+ s.num
9: return d

10: function COND1(v): return v.level == −1
11: function R1(t, d):
12: d.num = d.num+ t.num
13: return d
14:
15: function LOCAL(v, curLevel):
16: v.level = curLevel
17: return v
18:
19: function F2(s, d): return d.level == s.level− 1

20: function UPDATE2(s, d):
21: d.b = d.b+ d.num

s.num
∗ (1 + s.b)

22: return d
23: function R2(t, d):
24: d.b = d.b+ t.b
25: return d
26:
27: function BC(S, curLevel)
28: if (SIZE(S) == 0) then return
29: A = EDGEMAP (S,E, CTRUE, UPDATE1, COND1, R1)
30: A = VERTEXMAP (A, CTRUE, LOCAL.bind(curLevel))
31: BC(A, curLevel + 1)
32: A = EDGEMAP (S, reverse(E), F2, UPDATE2, CTRUE, R2)
33:
34: r = 0 . choose a BFS root
35: U = VERTEXMAP(V , CTRUE, INIT.bind(r)) . initialize
36: U = VERTEXMAP(V , FILTER.bind(r)) . create the frontier
37: BC(U , 1) . calculate the betweenness centrality scores

it is possible to port existing vertex-centric programs in our
model. Below we outline a proof (see the full version [1]
for details). In each superstep of the vertex-centric model, all
active vertices (called frontiers) execute the same user-defined
vertex function in parallel, which receives a set of messages as
input (inbox) and can produce one or more messages as output
(outbox). At the end of a superstep, the runtime receives the
messages from the outbox of each vertex and computes the set
of active vertices for the next superstep. The local computation
in each superstep can be implemented in FLASH through
the VERTEXMAP, which processes the inbox to produce the
updated value and the outbox for each vertex, and a following
EDGEMAP function adds a message to the inbox of the target.

Support for the three critical requirements. Besides ex-
pressing existing vertex-centric algorithms, FLASH provides
the possibility of expressing more advanced algorithms. It
is the first distributed graph processing model that satisfies
all of the three critical requirements for programming non-
ISVP algorithms. (1) We allow the users to define the arbi-
trary control flow by combining the primitives, thus FLASH
can naturally support multi-phased algorithms. In traditional
vertex-centric models, these algorithms are supported in an
awkward way since they only allow to provide a single user-
defined function. (2) The vertexSubset structure supplements
the perspective of a single vertex, allowing to conduct updates

on arbitrary vertices. Multiple vertex sets can be maintained at
the same time, they can even be defined in a recursive function.
Without this feature, a framework has to start from the whole
graph every time and pick up specific vertices. (3) FLASH
makes an extension to Ligra by allowing the users to provide
the arbitrary edge set they want to transfer messages, even
when the edges do not exist in the original graph. Therefore,
algorithms that contain communication beyond neighborhood
can be expressed intuitively, such as the optimized CC algo-
rithm [19].
Dual update propagation model. During graph processing,
the type of an active set may be dense or sparse, typically
determined by the size of active vertices and associated
outgoing edges. Ligra dispatches different computation kernels
for different types of the active set: the push mode for sparse
active sets and the pull mode for dense active sets. FLASH
follows this design and extend it to fit the distributed scenario,
using an adaptive switching between these two modes.

The EDGEMAP function calls one of EDGEMAPDENSE
and EDGEMAPSPARSE (Algorithm 4 - 6) according to the
density, which implements the pull mode and the push mode,
respectively. The users can set the threshold to decide if it
is dense. EDGEMAPDENSE loops all vertices in the graph in
parallel and for each vertex v, it sequentially applies F and
M for its neighbors that are in U and the edges are in H , until
C returns false. After that, its id will be added to the result.
Since all updates are applied immediately, R is omitted.

On the contrary, EDGEMAPSPARSE loops all vertices in the
active set U in parallel and for each vertex u ∈ U , it executes
F (u, ngh) and M(u, ngh) in parallel to update its qualified
neighbors. If a neighbor is updated, it will be added to Out.
As a vertex may be updated by different neighbors at the same
time in a single EDGEMAPSPARSE function, all the new values
will be applied on the target vertex through the R function.

This auto-switch scheme is proved to be useful for real-
world graphs and is also adopted by some other works [34],
[35], [11]. Also, FLASH ’s dual mode processing is optional:
users may choose to execute in only one mode through calling
EDGEMAPDENSE/EDGEMAPSPARSE, instead of EDGEMAP.

Algorithm 4 EDGEMAP

1: function EDGEMAP(U, H, F, M, C, R)
2: if (the density of U > threshold) then
3: return EDGEMAPDENSE (U, H, F, M, C)
4: else
5: return EDGEMAPSPARSE(U, H, F, M, C, R)

Algorithm 5 EDGEMAPDENSE

1: function EDGEMAPDENSE(U, H, F, M, C)
2: Out = {}
3: parfor v.id ∈ V do
4: vnew = v
5: for (ngh, v) ∈ H do
6: if (C(vnew) == 0) then break
7: if (ngh.id ∈ U and F (ngh, vnew) == 1) then
8: vnew = M(ngh, vnew)
9: Add v.id to Out

10: return Out



Algorithm 6 EDGEMAPSPARSE

1: function EDGEMAPSPARSE(U, H, F, M, C, R)
2: Out = {}, Tmp = {}
3: parfor u.id ∈ U do
4: parfor (u, ngh) ∈ H do
5: if (C(ngh) == 1 and F (u, ngh) == 1) then
6: Add (M(u, ngh), ngh.id) to Tmp
7: Add ngh.id to Out

8: parfor v.id ∈ Out do
9: vnew = v

10: for (t, v.id) ∈ Tmp do
11: vnew = R(t, vnew)

12: return Out

IV. SYSTEM DESIGN AND IMPLEMENTATION
To realize the programming model above, we design and

implement a new distributed framework. In this section, we
first describe the system architecture. The technique details
of the main components will also be presented. And then, we
will introduce some system optimizations we have explored.

There are several main components in the framework, as
shown in Figure 2. The first is a code generator which takes
the high-level FLASH APIs as input, and generates execution
code to be run on the second component named FLASHWARE,
which is a middleware designed and optimized for the dis-
tributed graph processing. The FLASHWARE executes the code
produced by the code generator on the distributed runtime,
which contains multiple CPUs of the cluster machines. Each
process acts as an individual worker and could contain mul-
tiple working threads. Each worker processes a fragment of
the distributed computation, and the communication between
different workers is implemented through MPI.

A. Graph Partition
The graph is partitioned using an edge-cut scheme, as we

described in Section II. Every worker is assigned with a set
of disjoint vertices (and the associated edges). For a worker,
the vertex data is held in its memory. While for the edges,
it depends: if there are enough memory capacity, the edges
are cached in memory all the time; otherwise, they are only
loaded from disks when necessary. The built-in partitioner
is hash-based as it is most-frequently used, and it is more
effective than other lightweight strategies in FLASH according
to our evaluation (in the full version). FLASH also allows the
users for specifying their own edge-cut partition strategy (e.g.,
METIS [36]) to pursuit even better workload balance. As this
is not the focus of this work, we do not dive into more details.

Suppose an m-worker cluster, the given graph G = (V,E)
will be partitioned into m partitions. Vi is the vertex subset
held by the i-th worker, with each vertex in Vi owns a master
on this worker. There are also mirrors created for remote
vertices (i.e., vertices assigned to other workers). Figure 2
gives an example, where the first three vertices locate at worker
#1, and the other three vertices belong to worker #2. For each
vertexSubset, a worker simply maintains a set of vertex ids,
representing the master vertices in the set that locate on it.

B. FLASHWARE
FLASHWARE is designed as a middle layer that completes

intra-node updating and inter-node communication (message
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Fig. 2: System architecture and the design of FLASHWARE.

passing). FLASHWARE enables FLASH’s interface to hide the
details of communication and data distribution, as well as
provides the capability to apply multiple system optimizations
automatically and adaptively at the runtime.

Data access. FLASH’s execution is based on the BSP model,
hence FLASHWARE distinguishes the current states and the
next states. The current states of a vertex are ensured to be
consistent on all workers who access it in the current superstep.
On the other hand, the updated values are written in the next
states, which is not visible to other vertices in the current
superstep and may be different between workers. To save the
memory, the next states are only created when necessary.

FLASHWARE exposes two APIs for accessing data:

(1). get(id : N) 7→ vertex

(2). put(id : N,
v : vertex,
R(new : vertex, old : vertex) 7→ vertex) 7→ None

The get function is used to access a specific vertex with
id through reading the current states. And the put function is
used to update the vertex with id using a new value v through
writing the next states. The data in current states is read-
only and consistent during a superstep, thus arbitrary vertices
(masters or mirrors) can be obtained safely without data races.
As for put, the operations on a master are applied immediately,
while operations on a mirror may incur concurrent updates
(in EDGEMAPSPARSE), so a reduce function R is required
to aggregate the new value with the old value. This kind of
modification is first applied on the mirror inside this worker,
and then further propagated to the corresponding master.

Communication/Synchronization. Both of VERTEXMAP and
EDGEMAPDENSE make updates for the masters, thus mes-
sages are only from masters to related mirrors. While for
EDGEMAPSPARSE, the synchronization procedure is three-
phased: a mirror first merges updates to form a temporary new
value for this vertex; then mirrors send messages to the master
which processes these messages to decide the final state; and



TABLE II: The effect of the optimizations.

Optimization Effect on performance

O1 reduce the total time from (
∑

T i
push or

∑
T i
pull) to (

∑
min(T i

push, T
i
pull)) ideally, T i is the time for iteration i

O2 reduce T i from (T i
communication + T i

computation + T i
others) to (T i

communication + T i
computation − T i

overlap + T i
others)

O3 reduce the size of a single message from (the total size of all properties) to (only that of critical properties)
O4 reduce the number of messages for synchronizing a single vertex from (the number of partitions) to (the number of necessary mirrors)

a master broadcasts its final state to necessary mirrors. As a
result, there are two rounds of message-passing.
(3). barrier() 7→ None

The interface barrier() acts similar to MPI Barrier. It
is called at the end of a superstep, forcing the workers to wait
until all workers have completed the processing for the current
superstep. It ensures that all messages are delivered and all
updates are applied. When it finishes, the current states and the
next states are swapped to make all updates in this superstep
to be visible in the current states for starting a new superstep.
Fault Tolerance. Inspired by GraphLab [8], it is possible
to achieve fault tolerance for FLASH by constructing the
snapshots of FLASHWARE, because the system runs based
on the states of FLASHWARE. For constructing a snapshot,
the modified data of vertex states since the last snapshot as
well as all vertexSubsets are saved. Once there is a failure,
the system will be recovered from the last checkpoint. We are
currently implementing this distributed checkpoint mechanism
as an important future work for the production deployment.

C. Code Generation
The code generator generates code to be executed by

FLASHWARE, from the high-level user-provided APIs. Take
the VERTEXMAP as an illustration, it contains calling get()
and put() on the master vertices in parallel inside a worker.
Once a master is updated, messages are generated adaptively
to synchronize the new state to its mirrors. The barrier() is
called at last to ensure that local computation is completed on
each worker, and all messages are delivered. After that, the
superstep for this VERTEXMAP finishes. The code generation
for EDGEMAPDENSE is similar, except that it could call get on
mirror vertices, instead of the master vertices only, as Figure 2
shows. the EDGEMAPSPARSE is more complex since it also
calls put on mirror vertices.

D. Optimizations
Here we treat the dual update propagation model as the

first optimization of FLASH, denoted by O1. On top of O1,
we introduce three more system optimizations in FLASH (O2,
O3, O4), with the effect of them outlined in Table II. In
general, these techniques are useful on all kinds of datasets,
except O1 that has no effect on very sparse graphs for which
FLASH always uses the sparse mode. As for algorithms, we
analyze the algorithms implemented in FLASH for applications
of Table V, and report all applicable optimizations in Table V
for each algorithm. O1 is applicable for algorithms in which
the density (dense or sparse) of the active set changes during
computation; otherwise, if the active set is always dense or it

TABLE III: The rules to decide critical properties.

VERTEXMAP
EDGEMAPDENSE EDGEMAPSPARSE
source target source target

get × X × × X
put × – × – X

“X” means that the property is decided to be critical; “×” means that
cannot decide yet; “–” means that this kind of operation never happens.

is always sparse, it has no effect. The applicability and effect
of O2, O3 and O4 are discussed as below.

Overlap communication with computation (O2). For a
worker with c cores, FLASH maintains a thread pool containing
c threads. Among them, one thread is responsible for inter-
worker message sending and one is for receiving via MPI.
The other threads perform parallel vertex-centric processing.
As separate threads are created to execute message passing, the
computation and communication tasks are co-scheduled. By
overlapping communication with computation, this technique
can speed up all kinds of algorithms, leading to a performance
improvement of 4% ∼ 23% (refer to Section V-D and [1]).

Synchronize critical properties only (O3). In some cases,
there are multiple vertex properties, but not all of them are
critical. We say a property critical only if it is accessed
by other vertices, thus the update to the master need to be
broadcasted to its mirrors. On the contrary, if a property
is only read by the master, means that it is only useful in
local computation, it is not critical. Given a vertex property,
we can decide if it is critical through static analysis of the
program. Table III gives the rules based on a classification
of the operations on a property. If and only if it is got as
the property of the source vertex in an EDGEMAPDENSE
function, or it is got/putted as the property of the target in
an EDGEMAPSPARSE function, it is critical. For example, the
property v.b in MIS (Algorithm 13 in the full version) is an
uncritical property, and in GC, the set for recording neighbors’
colors is uncritical. For algorithms (e.g., BFS and BC) that do
not contain uncritical properties, this technique has no benefits.
This optimization reduces the size of a single message from
the total size of all properties to only that of critical properties.
A quantitative analysis (in the full version) shows that it leads
to a reduction on the total communication cost of 79% for
MIS and 84% for GC on average.

Communicate with necessary mirrors only (O4). Another
intuitive way to eliminate redundant messages is to commu-
nicate with only the necessary mirrors. For normal graph
applications, the messages are transferred along the edges.
Therefore, a master should only communicate with its neces-
sary mirrors which locate in a partition containing at least one



neighbor of this vertex. Only in the cases that the programmers
define virtual edges for EDGEMAP, which beyond the scope
of E (e.g., in CC-log), FLASHWARE synchronizes the update
on a master to all partitions, thus this optimization is disabled.
For synchronizing a vertex, it reduces the number of messages
from the number of partitions to the number of its necessary
mirrors. A quantitative analysis on BFS and TC (in [1]) shows
that on average, this technique reduces 42% messages for BFS
and 35% messages for TC.

V. EVALUATION
In this section, we present the evaluation results to show

the superiority of FLASH over previous works in terms of
expressiveness, productivity, and efficiency. (1) For expressive-
ness, we choose 18 representative graph applications from [20]
and implement them in FLASH. Each of them represents a
general category of algorithms and is frequently used in real-
world applications. Some applications are rarely provided in
previous works, indicating FLASH’s strong expressiveness. (2)
For productivity, we try our best to implement algorithms
for these applications in state-of-the-art graph frameworks,
and show the Logical Line of Codes (LLoCs) [27]. Due to
the limitations of the expressiveness in other works, we can
only implement the sub-optimal version or even failed to
implement the naivest version for some algorithms. (3) For
efficiency, we compare the execution time of FLASH with
other frameworks, which shows that FLASH achieves the best
overall performance. We also conduct micro benchmarks to
reveal why FLASH runs faster in most of cases.

A. Experimental Setup
We compare FLASH with state-of-the-art graph processing

frameworks using following setups:
Platform. All our experiments are conducted on a 20-node
Intel(R) Xeon(R) CPU E5-2682 v4 based system. Each node
has 32 cores running at 2.50 GHz and 512GB of main
memory. All nodes are connected with a 10Gb ethernet. In
order to perform the comparison, the latest version of Pregel+,
PowerGraph, Gemini and Ligra are installed on the cluster. We
leverage OpenMP to manage threads and Open MPI to manage
message passing between nodes.
Datasets. We use a collection of real-world graphs, including
social networks (SN), web graphs (WG), and road networks
(RN), with their basic characteristics illustrated in Table IV.
For the social network, it is characterized by a very skew
distribution of edges, usually with some “hot” vertices having
an extremely high degree. For the road network, it has a very
long diameter and fewer associated edges per vertex. And the
web graph lies somewhere in middle. For unweighted graphs,
random weights are added to each edge if necessary.
Applications. We choose 18 representative graph applications,
as shown in Table V. CC and BFS are well supported by all
tested frameworks, because the ISVP algorithms perform well
enough for most cases. We also implemented an optimized CC
algorithm [19] in FLASH since it performs better on large-
diameter graphs. For BC, MIS and MM, every system we

TABLE IV: A collection of real-world graphs.

Abbr. Dataset |V| |E| Diameter Domain

OR [37] soc-orkut 3.07M 117M 9 SN
TW [38] soc-twitter 41.7M 1.47B 15 SN
US [39] road-USA 23.9M 28.9M 1452 RN
EU [39] europe-osm 50.9M 54.1M 2037 RN
UK [39] uk-2002 18.5M 298M 25 WG
SK [39] sk-2005 50.6M 1.95B 23 WG

TABLE V: A collection of representative graph applications.

Abbr. Application Abbr. Application

CC123 connected components BFS124 breadth-first search
BC124 betweenness centrality MIS1234 maximal independent set
MM124 maximal matching KC234 k-core decomposition
TC234 triangle counting GC234 graph coloring

SCC124 strongly CC BCC12 biconnected components
LPA234 label propagation MSF2 minimum spanning forest
RC234 rectangle counting CL234 k-clique counting
3PC234 3-path counting DC234 diamond counting
TTC234 tailed-triangle counting KCS24 k-core searching

The four optimizations in FLASH: (O1) dual update propagation1, (O2)
overlap2, (O3) critical properties3 and (O4) necessary mirrors4 optimization.

evaluated is able to express a basic algorithm correctly, but
they failed to express the advanced versions, suffering either
poor performance or complicated programs. FLASH is not only
able to implement the basic version with less effort, but also
make the advanced version possible. For KC, TC and GC, even
the naivest algorithms are not feasible to implement in some
frameworks, while FLASH is able to implement them with less
effort, because of the support for non-ISVP algorithms. As for
SCC, BCC, LPA, MSF, they are rarely provided by existing
graph frameworks, and it is often failed to implement them.
While it is easy for FLASH to do so. The last six applications
result in local algorithms, in which a piece of message will
be propagated within only several hops. Since this kind of
workloads are not the main target of general graph processing
frameworks, few of them are provided by the competitors,
which verified the expressiveness of FLASH once again.

Baselines. Four representative state-of-the-art graph process-
ing frameworks are tested as the baselines: Pregel+, Power-
Graph, Gemini and Ligra. Pregel+ is a framework that uses
Pregel’s vertex-centric model. Compared with other Pregel-
like frameworks (e.g., Giraph [7] and GPS [12]), Pregel+
provides simpler interface and higher efficiency. PowerGraph
is the representative framework that adopts the GAS model.
Gemini is a state-of-the-art framework which is reported to
significantly outperform all well-known existing distributed
graph processing frameworks, however, its expressiveness is
weaker than others’. Ligra is a shared-memory framework
which provides similar interfaces with FLASH.

These frameworks provide some pre-optimized built-in al-
gorithms, but none of them implements for all applications
in Table V, due to the limitations of expressiveness. For fair
comparison, we test the built-in algorithms if provided (if
multiple implementations provided, choose the fastest one),
or, we try our best to implement them in these frameworks.



TABLE VI: Execution time for the first eight applications on six datasets (in seconds).

App. Data Pregel+ PowerG. Gemini Ligra FLASH App. Data Pregel+ PowerG. Gemini Ligra FLASH
C

C

OR 9.21 5.31 1.24 0.49 0.48

B
FS

OR 3.07 6.27 0.87 0.35 0.35
TW 99.31 281.93 8.60 10.09 6.38 TW 31.47 48.11 4.61 2.28 6.16
US 435.42 1832.2 524.34 323.43 30.96 US 202.79 1512.3 519.01 244.01 12.17
EU 1740.0 6749.7 1302.3 663.10 76.47 EU 1035.5 4453.4 1445.4 506.72 50.32
UK 33.56 26.33 3.33 2.09 2.51 UK 5.94 15.51 2.78 1.09 2.26
SK 132.97 307.30 5.57 4.07 7.02 SK 29.33 35.96 3.53 1.92 6.02

B
C

OR 11.23 13.40 1.73 0.81 0.54

M
IS

OR 11.22 12.30 1.78 2.66 0.51
TW 110.29 121.71 8.15 21.62 11.77 TW 55.62 176.77 4.66 20.61 4.58
US 516.86 3066.8 1007.1 411.25 16.94 US 4.55 22.58 3.93 1.10 0.94
EU 2981.1 OT 2861.8 978.21 129.64 EU 254.88 722.41 188.22 122.41 12.14
UK 22.61 39.91 6.24 2.18 3.87 UK 14.05 65.64 20.46 4.92 1.83
SK 116.13 127.23 7.54 7.08 11.49 SK 77.54 108.54 13.37 9.24 5.13

M
M

OR OT OT 497.15 889.61 22.27

K
C

OR 678.44 1140.6 – 302.65 4.03
TW OT OT OT OT 25.15 TW 4937.4 OT – 1313.4 29.26
US 13.00 65.66 6.96 3.69 3.03 US 232.18 68.80 – 16.11 2.12
EU 428.87 1547.7 253.25 182.36 19.17 EU OT 634.68 – 195.04 10.44
UK OT OT 1091.8 518.83 22.11 UK 2924.6 2682.4 – 577.72 5.38
SK OT OT OT OT 114.76 SK OT OT – 3702.8 44.16

T
C

OR 529.61 27.86 – 12.90 3.32

G
C

OR OT 13.26 – – 9.72
TW OOM 720.01 – OT 49.10 TW OT 426.37 – – 264.44
US 17.90 6.48 – 0.57 1.09 US 10.29 13.11 – – 2.38
EU 32.56 10.91 – 0.53 2.29 EU 242.59 43.81 – – 54.61
UK OOM 17.44 – 14.23 7.00 UK 2219.7 36.19 – – 35.67
SK OOM 211.67 – OT 70.59 SK OT 706.21 – – 331.72

“–” means that we fail to implement an available algorithm for this case because of the limitations in expressiveness; “OOM” means that the tested algorithm
failed due to exhausted memory. “OT” means that the execution did not terminate within 5000s.

TABLE VII: Execution time for four more complex applica-
tions on six datasets (in seconds).

App. Data Baseline FLASH App. Data Baseline FLASH

SC
C

OR 120.76 1.24

B
C

C

OR 303.93 5.57
TW 949.60 13.80 TW 3615.0 75.85
US 719.91 57.84 US 3844.7 169.58
EU 3021.1 161.35 EU OT 486.14
UK 223.22 5.55 UK 879.91 22.82
SK 1335.5 18.26 SK 2991.8 55.20

L
PA

OR 155.90 16.83

M
SF

OR 55.96 6.96
TW 1433.9 100.31 TW 867.54 72.51
US 49.11 2.77 US 25.42 29.96
EU 276.20 25.57 EU 64.86 68.66
UK 299.62 11.06 UK 55.25 29.74
SK OT 78.25 SK 477.72 86.84

The baseline results for SCC, BCC and MSF are tested on Pregel+, and the
baseline results for LPA are tested on PowerGraph.

TABLE VIII: Execution time of FLASH for six local applica-
tions on six datasets (in seconds).

Data RC CL 3PC DC TTC KCS

OR 12.49 20.33 12.51 31.50 12.12 2.03
TW 140.16 OT OOM OOM OOM 7.45
US 1.31 1.22 1.29 1.93 1.40 2.22
EU 2.75 2.39 2.46 3.24 2.48 2.20
UK 14.65 420.12 27.09 77.23 27.20 2.21
SK 176.78 OT OOM OOM OOM 18.17

For KCS, k = 3 on US and EU and k = 50 on others. As for CL, k = 4.

B. Overall Performance
Table VI reports the results on overall execution time of

the first eight applications on six datasets. All these tests

are conducted on 4 nodes of the cluster except Ligra, which
only uses a single node. For fair comparison, the initial pre-
processing time (for data loading and partitioning) and post-
processing time (e.g., writing the results) of every framework
are not recorded. Specially, Pregel+ may decompose the algo-
rithm (e.g., BC, SCC, and BCC) into several individual sub-
algorithms and chain them by taking the output of the previous
as the input of the next. In this situation, the data sharing time
among sub-algorithms will be recorded. Table VII reports the
results of the four more complicated applications. Since they
are difficult or not supported to be implemented in previous
works, we only compare the performance of FLASH with the
most efficient implementation provided by other frameworks.

In 95.2% cases, FLASH provides competitive performance
compared with the one that performs best (within 2× slow-
down); and in 84.5% cases, it is faster than all other compared
frameworks, with the speedup up to 2 orders of magnitude. For
example, when calculating MM on the TW dataset, FLASH
only takes 25.15 seconds, while all the other frameworks
failed to get the results within 5000 seconds. Another example
is SCC, which requires complex computation and is only
provided by Pregel+ as far as we know. The implementation
in Pregel+ is 22.7× to 54.6× slower than FLASH. Power-
Graph performs efficiently on GC since it implements an
asynchronous algorithm, which converges faster than a BSP-
based algorithm. Ligra is faster than FLASH in some cases
because it is a shared-memory system, with the communication
cost much cheaper than that of distributed systems.

To further validate FLASH’s expressiveness, some local
algorithms are evaluated. Besides TC, which is provided by
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Fig. 3: The effectiveness of (a) dual-direction, (b) overlap, (c)
critical properties and (d) necessary mirrors optimization.

some compared frameworks, we implemented algorithms in
FLASH for matching other subgraphs including rectangles, 3-
paths, tailed triangles and diamonds. Searching for k-cliques
and k-cores are also implemented in FLASH without much
effort. Table VIII reports the time performance. Since this kind
of local algorithms are often non-ISVP, other general graph
processing frameworks mainly focus on global algorithms,
while FLASH is suitable for both global and local algorithms.

C. Productivity
To demonstrate the productivity of FLASH, the LLoCs are

counted, as shown in Table I. Note that we only consider
LLoCs in the core functions, while ignoring the comments,
input/output expressions, and data structure (e.g., the graph)
definitions. Gemini fails to express most algorithms since its
programming model is most limited. PowerGraph needs lots
of code for TC since it does not provide the serialization/de-
serialization semantics for users to exchange neighbor-lists.
Although Pregel+ is able to express some complex non-ISVP
algorithms (e.g., SCC and BCC), it is usually intractable. In
fact, its algorithms for these applications are decomposed into
several parts, with each part constitutes of an individual sub-
algorithm and needs all necessary functions to be programmed.
This is obviously not friendly to the users. Moreover, since

every sub-algorithm needs its own implementation for parsing
the input from the previous sub-algorithm and outputting data
for the next one (which are not counted in the LLoCs), the
actual lines of code are further more than the results in Table I
(811 lines in total for SCC and 3017 lines for BCC). This
algorithm decomposition also results in poor performance.

Although all compared frameworks evaluated are claimed
to provide succinct interface, and have been widely used,
FLASH requires less effort in implementation than other works
in all tested cases, showing that FLASH achieves the best
productivity when expressing both the ISVP and non-ISVP
algorithms. We provide more examples in the full version [1]
for the readers to further judge the succinctness and readability.

D. Micro Benchmarks
To further evaluate how the optimization techniques impact

FLASH’s performance, we conduct several micro benchmarks.
This section summarizes the results, please refer to the full
version for more detailed experimental data.
Dual update propagation model. Adaptive switching be-
tween the pull (dense) mode and the push (sparse) mode
according to the density improves the performance of FLASH
significantly. For algorithms such as BFS and BC, in common
cases, the active set is initially sparse, switches to dense after
a few iterations and then switches back to sparse later. For
another category of algorithms (e.g., CC, MM, MIS and GC),
the active set starts as dense, and becomes sparser as the
algorithm continues. For TC and PageRank, all vertices are
active in each step (i.e., in the dense mode all the time), so
this adaptive switching is disabled. We demonstrate the ef-
fectiveness of adaptive switching by compare its performance
with using either push or pull. Figure 3 (a) shows the execution
time of BFS and CC, as expected, the performance gap is quite
significant. In conclusion, the dual update propagation scheme
always achieves the best performance, which outperforms the
push-only and pull-only alternatives by 1.0× ∼ 1.5×. The
US graph is sparse with a very low average degree, thus our
adaptive switching falls into the sparse mode all the time,
while the dense mode consumes much longer execution time.
Overlap communication with computation. We compare
the execution time of two algorithms with and without this
optimization, as shown in Figure 3 (b). According to our eval-
uation, this optimization leads to a performance improvement
of 4% ∼ 23%. It is applicable for all algorithms, and it is
typically more effective for algorithms that the computation is
lightweight and the communication time is comparative with
that of computation, such as CC and MM.
Synchronize critical properties only. As analyzed in Sec-
tion IV-D, this strategy is useful when there are uncritical
properties. Figure 3 (c) shows the execution time of MIS
and GC on different graphs when enabling and disabling this
optimization, showing that it could lead to a considerable
speedup. These two algorithms represent different workloads.
In MIS, the uncritical property is a 1-byte boolean variable,
while in GC, the uncritical property is the neighbor set
which can be very large. A more detailed analysis on the
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Fig. 4: (a) The number of active vertices for MM-basic and MM-opt on TW. (b) Performance of TC on TW with varying
cores per node (4 nodes in total). (c) Performance of KC, TC, GC and LPA on TW with varying nodes (4 cores per node).

communication cost (by counting the exact amount of network
traffic) shows that the average reduction on communication is
79% for MIS and 84% for GC. The average speedup of MIS
and GC are 2.7× and 8.3×, respectively.
Communicate with necessary mirrors only. To evaluate
the effect of communicating with only necessary mirrors, we
report the execution time of BFS and TC when enabling and
disabling this optimization (Figure 3 (d)). BFS contain many
rounds of small messages, while in TC, the messages can be
very large. This technique reduces the number of messages by
13% ∼ 79% for BFS and 6% ∼ 85% for TC, thus improves
the performance by 1.2× for BFS and 4.2× for TC on average.

E. Advanced Implementations
The high expressiveness of FLASH does not only allow

users to implement algorithms with less effort, but also allows
users to implement the advanced version of some algorithms
for higher performance. Consider the MM application as an
example, we implement a basic algorithm in FLASH (MM-
basic), as well as an optimized one (MM-opt), as described in
the full version. Other frameworks cannot implement MM-opt
since they do not support to define arbitrary edges sets. The
advanced algorithm has higher efficiency than the basic one,
which means it will touch less vertices and edges during the
execution. Figure 4 (a) compares the number of active vertices
(size of the frontier) in all iterations for both algorithms on the
TW dataset. The significant reduction in active vertices leads
to a considerable speedup of 70.1× (1763.0s for MM-basic
and 25.15s for MM-opt). This is also the main reason that
FLASH significantly outperforms other works. Another exam-
ple is the application CC, for which the CC-basic algorithm
takes 169.6s on US, and the CC-opt only takes 30.96s. For
applications that FLASH implements the same algorithm as
other systems such as BFS and TC, it provides a comparative
performance, as shown by Table VI.

F. Scalability
We examine the scalability of FLASH in terms of both intra-

node and inter-node. We first compare the performance of
FLASH while varying the cores of each node as 1, 2, 4, 8,
16, 32. Figure 4 (b) presents the execution time of running
TC on TW using 4 nodes, which shows a reasonable trend of
scalability, achieving speedup of 1.8×, 2.9×, 4.7×, 6.7× and
7.5× at 2, 4, 8, 16, 32 cores, respectively. The other cases

show similar trends, except the cases that the communication
time dominates the execution such as running BFS on the US
graph, on which the scalability is poor for all frameworks. The
reduction on execution time after 4 cores slows down since
when more cores are used, the scheduling cost and memory
contention inside a node increase.

We also conduct experiments to evaluate the inter-node
scalability using up to 20 nodes, as shown by Figure 4 (c). All
execution time are normalized to slowdown of the best case in
question. When increasing the cluster size from 1 node to 20
nodes, the speedup is 11.7× for LPA and 9.4× for KC (TC
and GC failed with 1 node). The reduction on execution time
becomes slower with the number of nodes increases, because
the computation time reduces but the communication cost
may increase. This is also the common pattern that limits the
scalability of all kinds of distributed frameworks. A piecewise
breakdown analysis on the execution time validates this, show-
ing that with the increase of the cluster size, the computation
time decreases nearly linearly, while the communication time
accounts to more and more percentages of the total time. For
example, the computation time for TC with 4 nodes is 3.6×
of that with 16 nodes, while the communication time is 1.2×.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we present FLASH, a framework for program-

ming distributed graph algorithms. We track three essential
metrics for graph frameworks from exploring more advanced
and complex graph algorithms: expressiveness, productivity
and efficiency. Providing a new high-level programming model
and an efficient system implementation, FLASH leads to easy
programming and outstanding performance for a wide variety
of graph algorithms. In addition to the algorithms we dis-
cussed, we believe that other algorithms can also benefit from
our framework, since the huge potentials it revealed.

As a topic for future work, FLASH is proposed to be a
component of GraphScope (the unified framework for large-
scale graph processing at Alibaba) for easing the program-
ming. Meanwhile, GRAPE [16] is the current component for
executing graph algorithms in GraphScope. While GRAPE
focuses on the low-level execution of graph algorithms, FLASH
emphasizes their easy programming in the higher level. Their
technique stacks are thus orthogonal in that a FLASH program
can be compiled into the GRAPE runtime to combine their
advantages, which will also be our future proposal.
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