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Abstract—Graph algorithms support a broad spectrum of big
data applications. A typical approach to scale graph algorithms
is to run in a distributed and parallel setting with multiple
processing devices. The approach requires balanced and effec-
tive utilization of computation, memory, and communication
resources across devices. To address the problem, a large number
of studies have been conducted, such as graph partitioning
and asynchronous computation. However, there are still many
outstanding issues yet to be solved. For example, the workloads
can be skewed differently across devices, and between iterations,
even with the state-of-the-art graph partitioners. As the graph
partitions are typically static, they fall short in capturing the
dynamic characteristics with different algorithms, inputs, and
progress, leading to poor utilization of resources. Recently,
GPUs have been increasingly used to accelerate various graph
algorithms. Their highly efficient interconnection technologies,
such as NVLink, open new opportunities for us to achieve better
resource utilization. In this paper, we analyze the dynamic load-
imbalance (DLB) problem and the long tail (LT) problem in
multi-GPUs and solve them by adaptive remote work stealing on-
the-fly. We first introduce a frontier stealing algorithm to solve
the DLB problem, then an ownership stealing algorithm to solve
the LT problem. Based on these two algorithms, we developed
GUM — a multi-GPU graph processing system with high device
utilization. We evaluated GUM on four typical graph algorithms
(BFS, WCC, PR, SSSP). The results show that GUM can run up
to an order of magnitude faster than Gunrock and Groute, with
fewer stragglers and less synchronization overhead.

Index Terms—Graph processing, Multi-GPU, Load balance

I. INTRODUCTION

Graph algorithms serve as essential building blocks for a

wide range of applications, such as social network analyt-

ics [1], routing [2], constructing protein network and De Bruijn

graphs [3], and mining valuable information in RDF (Re-

source Description Framework) graphs [4]. Generally, graph

analytics involve propagating labels across edges or iteratively

accumulating values from adjacent vertices. However, in the

era of big data, the computational and storage complexity of

sophisticated algorithms coupled with rapidly growing datasets

have exhausted the limits of a single device.

To process larger graphs, distributed graph processing has

been employed by recent graph processing systems e.g., Gem-

ini [5], and Gunrock [6], [7]. That is, we partition a large graph

into multiple subgraphs, then process each subgraph in one

computing device (e.g., CPU, GPU) in a data-parallel manner.

However, the performance of distributed graph processing is

often frustrating mainly due to the low utilization of com-

puting devices. Specifically, in distributed graph computing,

computing devices lose efficiency mainly due to waiting for

e.g., synchronization, and stragglers. For example, messages in

distributed graph processing often need to be serialized before
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Fig. 1: The timeline of SSSP of Gunrock.

communication, which requires manipulating many message

buffers, resulting in considerable overhead, thus computing

devices have to wait for the completion of such data movement

before advancing to the next round. A recent work [5] shows

that systems lose nearly a third of device utilization, as they

move from a single node to distributed implementations.

Example 1: Figure 1 shows the timeline of the single-source

shortest path (SSSP) algorithm of Gunrock [6], [7] on the

webbase [8] graph. The input graph is well-partitioned with

each GPU processing the same amount of edges. However, we

can still observe that the computing devices stall due to:

The dynamic load-balance (DLB) problem (labeled as 1 ). T-

he load imbalance of different computing devices leads to

stragglers. Recent works [4], [9], [10], [11], [7], [12], [13],

[14], [5] rely heavily on static graph partitioners to solve the

load imbalance problem. We find that the load-imbalance can

still be severe even if the graph has been well-partitioned with

advanced partitioners. In most cases, only a fraction of the

vertices, generally called frontiers, are involved in the current

iteration of graph computation. As shown in Figure 1, in

the beginning, the frontiers start from a single source vertex.

As it grows, the size of frontiers changes rapidly, causing

imbalanced workloads, due to the irregularity of graph

structure and the dynamic nature of graph algorithms [15].

For example, on iteration #9, the slowest worker (GPU2)

takes 2.6 × runtimes compared to the fastest worker (GPU4).

However, on iteration #10, the slowest worker (GPU2)

becomes the fastest worker and is 1.9 × faster than the

slowest worker (GPU6). Thus there is no guarantee that the

frontiers are universally evenly distributed with a static graph

partitioning algorithm. In our observation, the difference in

the workload in different devices can be up to 4.2 times,

which causes severe starvation.

The long tail (LT) problem (labeled as 2 ). Graph traversal

algorithms such as SSSP may take many iterations to converge.

At the late stage of such graph algorithms, only a small

fraction of vertices are activated. Instead of the computa-

tion, the latency gradually dominates the runtime, since the

computational power is over abundance under this situation.



The latency mainly consists of synchronization overhead (e.g.,

preparing message buffers for communication), or inevitable

data movement (e.g., transferring data between CPU and

GPU). These overheads take about several milliseconds which

is negligible in bustling iterations but is considerable when

there are thousands of such latency-bound iterations. These

synchronization overheads account for 21% of the total time in

this example. Generally, the more devices involved in compu-

tation, the longer the latency is. The long-tailed phenomenon

significantly limits the scalability of graph algorithms, such as

delta-PageRank, SSSP, and BFS.

Both problems exist in CPU-based graph processing

systems [14], [13], [5], [4], [16], [17], [18] and GPU-based

graph processing systems [19], [20], [21], [6], [12], [22],

[23], [24]. Moreover, these problems get even worse in

GPUs, since GPU-based graph processing systems are more

sensitive to load-imbalance and involve more overhead

like synchronization between host and GPU. Fortunately,

recent interconnection technologies for multi-GPU such

as NVLinks [25] deliver high bandwidth and low latency,

which provides new opportunities to make trade-offs between

efficiency and communication.

GUM. To solve these problems, we develop GUM
1, a frame-

work which leverages work stealing mechanism to solve the

DLB and LT issues at the same time. Specifically, GUM seize

the opportunities that: (1) The links between GPU pairs are

asymmetric, e.g., there may be two lanes of NVLinks (50

GB/s) or a single lane of NVLink (25 GB/s) or no links

between any two GPUs, as depicted in Figure 2. These connec-

tions vary significantly in speed, resulting in communication

between some GPU pairs being more expensive than others.

(2) Multiple stealing paths exist between a GPU pair. As

shown in Figure 2, GPU0 can steal some of the workload

from GPU7 by taking either GPU1 or GPU6 as intermediate

transit. The performance of different stealing paths may vary

significantly as the transmission data volume in each path may

vary in each iteration.

Contributions & organization. This paper aims to solve the

DLB problem and the LT problem. Compared with previous

works, this study has the following contributions:

(1) The DLB problem (Section III). We proffer a frontier

stealing (FSteal) strategy to solve the DLB problem. We

first introduce a cost model of FSteal to characterize the

computational and data-accessing pattern. Then, we formulate

the optimization objective of FSteal and provide a linear

programming approach to achieve it.

(2) The LT problem (Section IV). We proffer an ownership

stealing (OSteal) strategy to solve the LT problem. Similarly,

we introduce a cost model of OSteal and the optimization

objectives. After that, we propose an algorithm with a greedy

strategy to achieve it.

(3) Implementation (Section V). Based on FSteal and

OSteal, we propose our multi-GPU graph processing system

1Code available at https://github.com/alibaba/libgrape-lite/tree/gum.
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Fig. 2: An example of NVLink topology.

GUM. We describe the implementation details of GUM as well

as several optimizations to improve our stealing mechanisms.

(4) Experimental study (Section VI). An extensive evaluation

of the multi-GPU graph processing system GUM is presented,

demonstrating its efficiency.

II. BACKGROUND

Graphs. A graph can be represented as G = (V,E) where

V represents a finite set of vertices and E ⊆ V × V is a set

of edges. In real-life, {V,E}, is immutable and often very

sparse, which means |E| ≪ |V | × |V |. In this work, we only

consider the graphs that can fit the aggregated device memory.

Graph algorithms. A graph algorithm A is a set of

procedures on G to do data analytics and solve real-world

problems [26]. Since the GAS abstraction (Gather-Apply-

Scatter [14]) of graph algorithm is widely used and achieves

good results in real-world applications, this work considers

running GAS graph algorithms on multiple GPUs in the BSP

(Bulk Synchronous Parallel) [27] mode. More specifically,

only a subset of V participates in the computation of an

iteration k, which is called frontier, namely fk, and fk ⊆ V .

Gather is to combine the incoming messages, on which an

aggregation function is defined to aggregate the information

collected by current frontiers through the edges. Such as

picking out the minimum, or maximum value of messages

passed by adjacent edges. Apply is to apply the aggregated

results to the current frontiers, i.e., update the distance of

each vertex in an SSSP algorithm. Scatter propagates the

latest result of the frontiers along all the edges of them.

Graph partitions. To process large graphs in a distributed

system that has n workers, the input graph should be parti-

tioned into n non-overlapping fragments (a.k.a. subgraphs).

A n-way graph partition (F1, · · · , Fn) of a graph G(V,E)
partitions G into n fragments, such that (a) Fi = (Vi, Ei), (b)

V =
⋃n

i=1 Vi, and (c) E =
⋃n

i=1 Ei.

There are two main schemes for graph partitioning, namely

edge-cut and vertex-cut. In an edge-cut partition, the vertices

of fragments are disjoint, such that each vertex only belongs

to one fragment. And for a vertex-cut partition, the edges are

disjoint, such that each edge only belongs to one fragment.

A good graph partition is one in which the size of Fi is

more evenly distributed, while the number of edges (vertices)

replicated across fragments is as small as possible. In this

work, we only consider the edge-cut partition scheme.

Graph partition techniques are widely used to solve load

imbalance issues. However, graph partitioners often fail on the

DLB problem and LT problem as shown in Example 1. The
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reasons behind the inapplicability are: (1) graph partitioners

are static thus they can not adapt to the dynamic input such

as BFS/SSSP source, which may generate a completely

different workload distribution. (2) graph partitioners usually

try to preserve the locality of graph topology, making

nearby vertices resident on the same partition, which may

aggravate the “cocooning effect” (only one partition hold

active vertices in the first few iterations). (3) Sophisticated

graph partitioners often introduce high overhead [28]. Work

Stealing is orthogonal to the graph partitioners, since it can

work on either a good or bad graph partition scheme. But

most importantly, work stealing is dynamic, it can adapt to

diverse inputs or elasticity (scale in/out at runtime).

Work stealing. In parallel computing, work stealing is a

commonly used strategy [29] for the load balance problem. In

a work stealing scenario, we usually put the work items (a.k.a.

tasks) on a queue, and each worker has a queue of tasks to

perform. Each task consists of a series of work that has to be

executed sequentially. And workers are expected to consume

the tasks from their associated queues. When a worker runs

out of tasks, it looks at the queues of the other workers and

“steals” their tasks for their queues.

III. THE DYNAMIC LOAD BALANCE PROBLEM

To solve the DLB problem, we have to balance the workload

of each worker at runtime. As described in Section II, the

frontiers can be regarded as basic work items to process

in each iteration. Intuitively, by stealing parts of frontiers,

the GPU with a lower workload can spend free cycles to

help others with heavier workloads to avoid starvation, thus

reducing the end-to-end processing time. We call such stealing

strategy frontier stealing (short for FSteal). The challenge

of FSteal is to decide which GPUs to be the victim and

how many items to steal. Note that the neighbors of the

stolen frontier are still on the original device, which means

the graph topology (adjacency list) will be accessed remotely

via NVLink in computation.

Example 2: As shown in Figure 3, w.l.o.g., consider the

stealing policy for BFS algorithm under a 2-way partition.

We partition the graph into two fragments, vertices 0 ∼ 3 and

associated edges are assigned to F0 while others are assigned

to F1. In the second iteration, the BFS root vertex 0 (short for

v0) activates v1, v2, v3, and v5. GPU0 processes the v1, v2,

v3 with 8 edges, while GPU1 processes v5 with only 2 edges.

With frontier stealing, we can migrate v3 from GPU0 to GPU1

lest GPU0 becomes a straggler. Although GPU0 and GPU1

both have 5 edges and 2 vertices to process in this example, we

have to access the neighbors of v3 over NVLink instead of the

local memory bus, which will add cost to computation kernels.

Thus the plan of FSteal shown in Figure 3 is not optimal.

A. Formulation of Frontier Stealing

The policy of FSteal. A frontier stealing policy Pk
FSteal

under a n-way partition is an n×n matrix where skij ∈ Pk
FSteal

means worker j should steal skij vertices from worker i,

in the k-th iteration. For the stolen frontier skij , we have

skij ⊆ fk
i . Therefore, GPUj has to access remote data (e.g.,

the weights on edges) on GPUi when it performs the Gather

as discussed in Section II. The goal of FSteal is to generate

an optimal PFSteal to balance the runtime of each GPU with

low overhead. To avoid splitting the adjacency list which will

introduce additional atomic operations, we select a group of

vertices associated with required number of edges.

Quality of PFSteal: The target of FSteal is to balance and

minimize the runtime of the current iteration. The runtime

of GPUi completing its work in the k-th iteration is denoted

by T k
i . Then FSteal aims to minimize maxni=1 T

k
i , i.e., to

minimize the completion time of stragglers. Since the numbers

of associated edges of different vertices vary significantly,

we try to balance the edges that need to process in the k-th

iteration. However, simply keeping GPUs to process the same

number of edges may not be optimal, as shown in Example 2.

Optimization objective. We consider balancing the edges

instead of vertices because the variance of vertices is much

larger than edges, since the edge distribution of vertices is

usually skewed in real-world graphs. To generate PFSteal,

we should decide an n × n touched edges matrix X where

xij ∈ X is the number of associated edges of sij . Note that

PFSteal for GPUi and GPUj only steals the status of frontiers,

and the stolen frontiers skij are only valid in the k-th iteration.

In other words, the effect of FSteal is temporary, thus we

can consider the FSteal only within the current iteration

without worrying about the side effect for later iterations.

Given a graph G under an n-way graph partition P (n) =
(Fi, · · · , Fn), and a graph algorithm A. In the k-th iteration,

we define Lk = {lk1 , · · · , l
k
n} to be the set of current active

edges in each GPU, where each lki ∈ Lk is the number of

edges resident on worker i. In other words, the vertices of

fk
i are associated with the lki edges. Since edges in different

workers may vary, we define an n×n average cost coefficient

matrix C, where the cij ∈ C means the cost for worker j to

process one edge resident on worker i, we defer the discussion

of the cost coefficient matrix to Section III-B. To balance the

execution time of workers, the optimization target of the work

stealing problem is to:

min
ArgsX

n
max
j=1

n
∑

i=1

cijx
k
ij

s.t.







n
∑

j=1

xk
ij = lki

xk
ij ∈ {0, 1, · · · , |Ei|}

(1)



Theorem 1: The DLB problem is NP-hard.

Proof: The proof of NP-hardness of DLB problem can be

reduced to the linear programming problem. First, we let

z ≥
∑n

i=1 cijx
k
ij , thus the DLB problem is a mixed integer

linear programming (MILP) problem, which is NP-hard [30].

Discussion: We formulate a single superstep of graph algo-

rithm instead of the accumulated cost of multiple supersteps

mainly for two reasons: (1) The stealing of the entire process

is hard to formulate because we can not estimate the total flow

of each lane in the NVLink network due to the irregularity of

graph topology. (2) The FSteal only processes the stolen

edges while the frontiers are still generated on original GPUs,

thus the min-max problem of each iteration is independent.

B. Cost Model of Frontier Stealing
The goal of the cost model is to estimate the cost coefficient

matrix C described above. When stealing skij vertices to GPUj

from GPUi in the k-th iteration, GPUj should process xk
ij

edges in Gather. The cij here means the cost of GPUj to pro-

cess one edge resident on GPUi, which includes the communi-

cation cost and the computation cost. More specifically, given

a stealing policy PFSteal, we can estimate the cost of PFSteal

under an n-way partition of a graph G in terms of a commu-

nication cost function hP and a computation cost function gP .

Cost model. Let Wi = {w1, · · · , wm} be a set of characteris-

tics where each wj ∈ Wi is associated with the fragment Fi in

GPUi (e.g., Table I). Then, two functions h and g are defined

over W , which estimates the communication cost h(Wi) and

computation cost g(Wi), respectively. The estimated com-

munication time and computation time of GPUj under the

policy PFSteal is denoted by Eh
PFSteal

(j) and E
g
PFSteal

(j),
respectively. Then the cost of PFSteal(j) can be estimated

as:

EPFSteal
(j) = Eh

PFSteal
(j) + E

g
PFSteal

(j). (2)

We then show how to get Eh
PFSteal

(j) and E
g
PFSteal

(j):

(1) The communication time Eh
PFSteal

(j) =
∑i=n

i=1 h(Wi) ∗

xij =
∑i=n

i=1
xij

Bij
where Bij is the bandwidth between GPUi

and GPUj (when i = j, Bij is the local memory bandwidth),

which can be evaluated via micro benchmark. Intuitively,

processing local edges is faster than processing remote edges,

and processing remote edges between GPUs connected by two

NVLinks is faster than GPUs connected by only one NVLink.

(2) The computation time E
g
PFSteal

(j) =
∑i=n

i=1 g(Wi) ∗ xij :

This part estimates the time of computation if we fetch all

remote data into local at the cost of Eh
PFSteal

(j). The runtime of

the computation lies mainly in the memory access of the GPU,

and the atomic operations brought by the update operations.

Learning cost coefficient. Now we can see cij =
1

Bij
+g(Wi).

Next we show how to estimate g(Wi) in a learning approach.

Metric variables. We then select some features of the ver-

tices as metric variables W , which affect the behavior of

the computation (e.g., atomic, memory access pattern), as

shown in Table I. We use the following metric variable set:

W = {d+Fi
, d−Fi

, r+Fi
, r−Fi

, G(Fi), Her(Fi)}. For instance, the

TABLE I: The characteristics of current frontier fk.

Symbol Define Description

d
+
Fi

|{u| < u, v >∈ Ei}| The average in-degree of Fi

d
−
Fi

|{u| < v, u >∈ Ei}| The average out-degree of Fi

r
+
Fi

max
u∈Vi

d+(u) − min
u∈Vi

d+(u) The range of in-degree of Fi

r
−
Fi

max
u∈Vi

d−(u) − min
u∈Vi

d−(u) The range of out-degree of Fi

G(Fi)
2
∑|V |

u=1 ud(u)

|V |
∑

u−1 |V |d(u)
−

|V |+1
|V |

Gini coeffiecnt [31]

Her(Fi)
1

ln |V |

∑

uinV

−
d(u)
2|E|

ln
d(u)
2|E|

Degree distribution entropy [31]

d+Fi
(resp. d−Fi

) determines the number of incoming (resp.

outgoing) neighbors that v may access during computation;

r+Fi
(resp. r−Fi

) described the diversity of edges; while G(Fi)
(resp. Her(Fi)) described the distribution of edges.

Model learning. Given the metric set Wi described above, we

model g(Wi) as a polynomial function. The training samples

are denoted as [Wi, ti], which is extracted from the running

log of A, with the observed computational cost ti acts as

ground truth. We first run a given graph algorithm A on real-

life and synthetic graphs to collect training set Dg . Then we

train the model with the stochastic gradient descent (SGD)

algorithm [32]. SGD has been widely adopted for similar

tasks in previous work, such as estimating running time of

a superstep in ADP [11] and selecting the best optimization

variant in GSwitch [33]. SGD has a solid theoretical basis

and shown high performance and accuracy on diverse appli-

cations [34], [35]. As shown later in Section VI Exp-7, the

SGD with the learning model already achieves reasonably

good accuracy and performance. Note that the learning of

the cost coefficients is a standalone part of FSteal. Other

training methods that balances the efficiency and accuracy

(e.g., Adam) can be dropped in to replace the SGD as well.

Using root mean squared relative error (RMSRE) [36] as loss

function, the learning objective for g(Wi) is written as:

min
Γ

√

√

√

√

1

Dg

∑

[Wi,ti]∈Dg

(g(Wi)− ti)2

ti
2 (3)

Where Γ is weight parameters of the polynomial function.

The reason for implementing g(Wi) as a polynomial function

is twofold. (1) Polynomial regression has been proven to

be effective in predicting computational cost in theory [37],

which means that it can approximate any continuous function

defined on a closed interval. (2) The polynomial model is more

explainable compared with other black-box ML models [38],

it gives the cost expression and shows which variable in W
contributes most to the cost.

The cost coefficients have some degree of portability

because graph algorithms usually have commonalities and

they can be optimized under an unified abstraction [39],

[14], [13], [40]. In this paper, we adopt the GAS abstraction

and frontier is our core data structure. In each iteration of

A, we scan the associated edges of the current frontier and

apply updates to them, which can be estimated based on

the characteristics of the current frontier (shown in Table I).

For example, given the same frontier for both BFS and



SSSP algorithms, although they may activate totally different

neighbors for the next iteration, the number of touch edges and

the race condition are similar. Anyway, in the optimal case,

we can train the model separately for each algorithm to get

the optimal decision effect at the cost of longer train time and

low flexibility. In this paper, we run all the BFS, PR, SSSP,

and CC algorithms on 624 graphs from [41], and treat the

running log of each iteration as independent training samples.

C. Frontier Stealing Algorithm

Algorithm 1: The frontier stealing algorithm

Input : Cost coeffiecnt Matrix C, Workload L
1 Initialization X,D,F ← 0 ;
2 Initialization z ← 0 ;
3 build MILP solver target to min(z);
4 with restriction:

5 R1: z ≥
∑n

i=1 cijx
k
ij

6 R2:
n∑

j=1

xk
ij = lki

7 R3: xij ∈ {0, 1, · · · , |Ei|}
8 X = MILPSolver(C, L, m);
// select sij according xij

9 for i ∈ {1, . . . ,m} do
10 for v ∈ V i do

11 D[v] = d+(v) ;
12 end
13 D = PrefixSum(D) ;

// Xi is i-th row of X

14 F = PrefixSum(Xi) ;
15 F = SortedSearch(F, D) ;
16 for j ∈ {1, . . . ,m} do
17 Send {vi|F [j − 1] ≤ i ≤ F [j]} to GPUj ;
18 end
19 end

As discussed above, for the distributed frontier fk
i in the k-

th iteration on GPUi, the FSteal algorithm tries to generate

the matrix Xk, while the number of touched edges xk
ij means

the edges resident on GPUi that GPUj should process in

Gather. Specially, when i = j, xij means the amount

of edges that GPUi has to process locally. Intuitively, we

should minimize the execution time of the slowest worker

in each iteration. To solve the min-max problem, we add a

restricted condition z ≥
∑n

i=1 cijx
k
ij , and the optimization

target of DLB problem is to minimize z, which can further be

formalized into a mixed integer linear programming (MILP)

model. The MILP solver is able to find the touched edges

matrix which implies all the GPUs in the system complete

their work at the same time. Since the number of touched

edges xk
ij in the exact solution of MILP problem may not

be an integer, thus we round up the results. The FSteal

algorithm is shown in Algorithm 1.

As discussed in Section III-B, we first train a model

offline to estimate the cost coefficient matrix C among all

the GPU pairs. GPU pairs may communicate with each other

via different numbers of lanes of NVLink, thus some GPU

pairs incur higher overhead than others. For each iteration, we

calculate the number of edges to be processed in each GPU as

their workload L. In line 3-7, we set the optimization target for
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the MILP solver. In GUM, we use SCIP [42] solver to solve the

MILP problem. After calculating the matrix Xk, we have to

select which vertices to be sent to meet the requirement of Xk.

m here is the number of GPUs involved in the computation.

We calculate the prefix-sum of the out-degree of frontiers and

run a sorted search to find consecutive vertices as the stealing

policy PFSteal to be sent to other GPUs, as shown in line 9-18.

Time complexity analysis. For each iteration, we have to run

the FSteal algorithm to generate PFSteal. Since the MILP

problem is NP-Hard, so it can’t be solved in polynomial time

unless P = NP . However, MILP can certainly be solved in

exponential time by branch and bound. For each iteration, we

have to run the FSteal algorithm to generate PFSteal. We

assume the MILP solver has a time complexity of e(m), which

is beyond polynomial time. After obtaining the MILP result X ,

the prefix-sum of the out-degree of frontiers can be calculated

in O(|Vi|) and the time complexity of the sorted search is

O(m log(|Vi|)) based on binary search. To sum them up, the

time complexity of each iteration is e(m)+
∑

1≤i≤m(O(|Vi|)+
O(m log(|Vi|))) = O(e(m)+ |V |+m log(|V |)). Note that the

complexity of the solver is only related to the number of GPUs,

thus it is acceptable because the number of GPUs is small (e.g.,

8) for a modern GPU server. We measured the overhead of our

FSteal algorithm, and the result is shown in Section VI-C.

IV. THE LONG TAIL PROBLEM

The LT problem hurts the performance mainly due to the

synchronization overhead. Figure 4 (a) shows the kernels that

Gunrock will invoke in one iteration. The overhead of syn-

chronization consists of latency of kernel launching, exchange

of message size with peers, and manipulating of the communi-

cation buffers. For example, the separate step in Gunrock

will split the newly activated vertices into several bins, each for

one destination GPU. Actually, the more GPUs involved, the

higher the cost of synchronization. A straightforward solution

to reduce the overhead is to evict some GPUs out of the pro-

cessing if that does not introduce too much additional work to

other GPUs. To free a GPUi from the following computation,

another GPU must take ownership of the fragment Fi that

resides on GPUi, a.k.a. the ownerships of fragments on the

evicted GPUs will be taken by the remainders. We call this

kind of stealing the ownership stealing (short for OSteal),

which can solve the LT problem described in Example 1.

Example 3: Figure 3 shows a 2-way partition for a BFS

algorithm, GPU0 has 8 edges to process while GPU1 has only

2 edges to process. In FSteal our goal is to balance the



workload by stealing some edges from GPU0 to GPU1. We

have discussed a possible FSteal policy in Example 2 that

GPU0 processes v0, v1 while GPU1 processes v3, v5. However,

In OSteal, our goal is to reduce the synchronization overhead

which is related to the number of involved GPUs. To this

end, we make GPU0 take the ownership of GPU1, it means

that GPU0 will handle all the computation in Fragment1 in

the following iterations and GPU1 will not participate in

synchronization anymore. As a result, GPU0 will processes v1,

v2, v3, and v5. The difference between FSteal and OSteal

in this Example is that FSteal considers the synchronization

overhead as negligible while OSteal does not. Thus FSteal

focuses on balancing the computation time whereas OSteal

focuses on reducing the synchronization overhead.

A. Formulation of Ownership Stealing

The policy of OSteal. An ownership stealing policy

POSteal is an n-dimension vector, i.e., oj ∈ POSteal, while

oj = i(1 ≤ i, j ≤ n) means that GPUi steals the ownership

of the whole fragment Fj located in GPUj . The primary

goal of OSteal is to reduce the synchronization overhead

by excluding some GPUs from the communication group,

at the cost of increasing workload in other GPUs. Unlike

FSteal, OSteal is a long-term behavior, when OSteal

occurs between GPUi and GPUj , not only the workload of

the current iteration will change, but also all the subsequent

messages that should be sent to the GPUj in turn will be

forwarded to the new owner of Fj . Thus, when GPUi steals

the ownership of Fj in GPUj , GPUj will have no workload

to do in following iterations unless it is enabled again.

Reduction Tree. To search for the optimal POSteal, we have

to enumerate all the possible causes of POSteal, which has
∑n−1

i=1 Ci
ni

n−i options (it is not
∑n−1

i=1 Ci
n because who steals

the ownership also matters) in an n-way partition, which is

a huge number even n is small. Fortunately, we can reduce

the overhead with the properties of OSteal. Looking at

the NVLink topology shown in Figure 2, we notice that

the communication links in GPUs have a certain degree of

equivalence, i.e., removing (GPU2, GPU3) or (GPU4, GPU5)

from the network will lose an equal amount of bandwidth.

Furthermore, the runtime is dominated by synchronization

overhead when OSteal occurs, since the goal of OSteal is

to reduce the synchronization overhead when the computation

cost is comparable to the former. Therefore, the performance

behaviors of equivalent policies are similar. Based on the

above observations, we can steal the ownership in a fixed

order to simplify the decision process of OSteal. As shown

in Figure 4 (b), the OSteal of n GPUs can be organized

into a reduction tree, according to their bandwidth. In other

words, we want to keep the residual network to have the largest

aggregated bandwidth. For example, if a POSteal indicates that

2 GPUs are better than 8 GPUs, then leaving (GPU0, GPU3)

is much better than leaving (GPU0, GPU7).

Quality of POSteal: By trading off between parallelism and

synchronization overhead with OSteal, we can achieve better

performance. The quality of POSteal can be evaluated simi-

larly to PFSteal, by adding the synchronization overhead T̂ k
i

into consideration. OSteal aims to minimize maxni=1(T
k
i +

T̂ k
i ). We can still use the FSteal algorithm described in Sec-

tion III to estimate T k
i for each GPUi . With the reduction tree,

the search space is small, thus we can enumerate all the cases

and generate the optimal POSteal with negligible overhead.

For a given policy POSteal, we consider the cost of a single

iteration after stealing, which can be divided into two parts: (1)

the cost of kernels; (2) the cost of synchronization overhead.

(1) The cost of the kernel comes from distributed computation

and communication. It is decided by the last worker that

completes the computation kernel. Given the POSteal, the

minimum value of this cost is the optimization target (denoted

by z) of the frontier stealing problem in Section III, thus

could be estimated by the MILP solver.

(2) The cost of synchronization overhead includes the cost

of kernel launching, inevitable data movements, preparing

message buffers, etc. They are essential in every iteration, and

roughly in proportion to the cluster size, thus we can estimate

T̂ k
i = p∗m, where m is the current number of workers, and p

is a parameter that can be estimated during previous iterations.

Then, the total cost of OSteal can be estimated as:

EPOSteal
= z + p ∗m. (4)

When the workload in each GPU is extremely low, espe-

cially in the late stage of the algorithm, the synchronization

overhead dominates the runtime, which is the second part of

Equation 4. In this situation, we can fold the GPU scale to

reduce the total overhead. For example, reduce the number of

workers from m = 8 to m = 4. On the other hand, when the

workload is high, the first part accounts for the vast majority

of Equation 4, thus a larger GPU scale will lead to higher

efficiency. Therefore, more workers should be enabled under

these circumstances. In other words, ownership stealing makes

a trade-off between parallelism and efficiency. And Equation

4 decides the most suitable GPU scale.

B. Ownership Stealing Algorithm

The ownership stealing algorithm is shown in Algorithm 2.

We first enumerate the resulting cluster size m which satisfies

1 ≤ m ≤ n. And then, the ownership vector O(m) is

generated based on the reduction tree discussed above. After

that, the MILP solver of Algorithm 1 is utilized to obtain the

minimum value of the computation kernel cost z. We will

discuss how to revise the cost coefficient matrix of FSteal

more specifically in Section V. Together with other costs

estimated as p ∗ m, the total cost of an iteration under the

current OSteal policy is estimated. Among all possible

policies, the policy with the lowest cost will be selected.

In the initial stage of an algorithm, all the n workers are

involved, with each worker holding one fragment under the n-

way partition of graph G. In each of the following iterations,

this ownership stealing algorithm runs on the coordinator.

Once the ownership stealing is actually decided to be exe-

cuted (i.e.,, the most suitable m decreases or increases), the



resulting policy will be scattered to each worker. And after the

ownership stealing is completed, a new set of workers R is

formed to participate in later processing. For example, when

executing the BFS algorithm on a sparse graph, the workload

may be low in the early stage, so we shrink the GPU scale

to make only a few workers participate in the processing. As

the workload increases, more workers will be utilized, with

the stolen ownership given back. And in the late stage of the

algorithm, the workload is extremely low, thus the GPU scale

shrinks again to reduce the total overhead.

Time complexity analysis. Modern MILP solvers are highly

efficient. For each cluster size m, the stealing policy and

worker set can be directly generated from the reduction tree in

time O(1). After that, the algorithm takes e(m) for calling the

MILP solver (line 6), O(mn) for obtaining the kernel value

z (line 7), and O(1) for recording the lowest cost. Hence,

the total time complexity of obtaining the minimum kernel

cost is O(e(n)) (noting that
∑

m≤n O(e(m)) = O(e(n)) and

O(e(n) + n3 + n) = O(e(n))). Similarly to frontier stealing

algorithm, the owner stealing algorithm is acceptable as its

time complexity is only related to the number of GPUs.

What’s more, when the cluster size decreases, the time for

executing this OSteal algorithm once will further decreases.

Algorithm 2: The ownership stealing algorithm

Input : Cost coeffiecnt Matrix C, Workload L, Reduction
Tree T , p

1 Initialization O ← 0 ;
2 Initialization Cost← INF ;
// enumerate the number of workers

3 for m ∈ {1, . . . , n} do
4 Generate the stealing policy O(m) based on T ;
5 Generate the worker set R(m) based on T ;

// call a revised MILP solver of Algorithm 1

to get min(z)

6 X = MILPSolver(C, L, R(m), m);

7 z = max
j∈R(m)

∑n

i=1 cijx
k
ij ;

8 if z + pm < Cost then
9 Cost = z + pm ;

10 O = O(m) ;
11 end
12 end
13 for i ∈ {1, . . . , n} do
14 Set ownership of Fi to GPUOi

;
15 end

V. GUM IMPLEMENTATION

In this section, we describe the GUM implementation which

is based on the FSteal and OSteal algorithms. We use an

example to show how to solve the DLB and LT problems in

the GUM workflow. At last, we discuss several optimization

techniques in GUM to improve the stealing mechanism and

reduce the overhead.

A. The workflow of GUM

The workflow of GUM is shown in Figure 5. At first, GUM

loads the graph data from the disk and then partitions the

graph into fragments. As Figure 5 shows, w.l.o.g., the number
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Fig. 5: The workflow of GUM.

of fragments is the same as the number of GPUs, and each

fragment is assigned to one GPU. In a fragment, the vertices

that are partitioned within the fragment are called “inner”

vertices, and the destination of cross-fragment edges are also

kept as “outer” vertices for message-aggregation optimization.

The inner vertices of each fragment are non-overlapping, and

we assume the aggregated memory of GPUs is sufficient to

store the whole graph.

We assign a GUM worker with each GPU, which is re-

sponsible for conducting communication for distributed graph

processing, e.g., sending/receiving vertex data to/from remote

GPUs and forwarding messages as a transit station for other

GPUs. The worker with the lowest GPU ID works as the

coordinator. Before each iteration, all the workers in the

system perform synchronization to get the number of work

items in the current iteration. Then the coordinator determines

whether the algorithm is converged based on the workload on

each GPU. The work stealing mechanisms (a.k.a. FSteal

and OSteal) lie at the heart of GUM, which takes the com-

munication relations among the GPUs and the communication

topology as input, and output the stealing policy to reorganize

the workload for each GPU. The objective of the stealing

arbitrator in Figure 5 is to minimize the end-to-end execution

time in the current iteration and to minimize the stealing

overhead. A stealing policy describes how the workload will

be transmitted between each pair of GPUs. In each iteration,

the stealing policy is generated by the coordinator before

the computation starts, and then the coordinator immediately

broadcasts the policy to all workers.

The interaction of FSteal and OSteal. As described in

Example 3, the FSteal focuses on the balance of workload

while the OSteal focuses on minimizing the synchronization

overhead. w.l.o.g., we discuss how the FSteal and OSteal

co-work in the SSSP problem described in Example 1. In

each iteration, GUM first enumerates the number of involved

GPUs (denoted by m), and generate the POSteal based on the

reduction tree. Then GUM solves the MILP problem under

the OSteal policy to generate an FSteal policy and record

the estimated runtime. After exhausting all the cases (from 1
GPU to 8 GPUs), GUM chooses the OSteal and FSteal

policy which minimize the estimated runtime. In the SSSP

problem shown in Example 1, the first 20 iterations process

a large amount of edges, and the computation time is much



larger than the synchronization overhead, so the OSteal

keeps the number of involved GPUs as many as possible and

does not make decisions to steal any ownership. When the

algorithm goes to the late stage and the LT perform happens,

the synchronization overhead is now comparable with the

computation time and such a situation may last about 200

iterations, so the OSteal shrinks the size of involved GPUs.

Example 4. Consider the workflow shown in Figure 5. After

the graph is partitioned into n fragments, a graph algorithm

will be executed in the following steps:

Step 1: Generate frontiers. Each worker will process its mes-

sage buffer at the beginning of each iteration. Then it will

generate the frontiers in the current iteration in each GPU.

Step 2: Ownership stealing. In order to solve the DLB and

the LT problems at the same time, we allow the execution of

FSteal and OSteal simultaneously during the algorithm.

Since the OSteal needs to take over the ownership of the

whole fragment, the generated frontier queue will directly be

on another GPU, which has a great impact on FSteal. For

example, if GPUi steals the ownership from GPUj , then GPUj

will just work like an extended memory and not participate

in the following computation. Therefore, we decide on the

OSteal policy before the FSteal.

Step 3: Frontier stealing. As discussed above, OSteal is

considered before FSteal, and it will evict some GPUs from

current iterations. To allow OSteal and FSteal to interact

with each other, FSteal should amend the cost coefficient

matrix. Denote by R as the removed GPUs after applying the

OSteal algorithm. We should set cij ∈ CPFSteal
to ∞ for

each j in R, which will force the FSteal algorithm not to

assign any frontiers to the removed GPUs.

Step 4: Processing the frontiers. After all GPUs steal what

they need based on the stealing policies POSteal and PFSteal,

the stolen frontiers (resp. ownership) have to be processed in a

separated kernel, thus introducing additional overhead which

is outside our cost model.

B. Optimizations

Executing FSteal and OSteal algorithms before pro-

cessing the frontiers may bring the overhead. If concerns about

the overhead are raised, we can alleviate the overhead of these

decision process. We next show how to reduce the overhead

by examples.

Example 5: Since generating a PFSteal in each iteration may

bring overheads, especially when GPUs have sparse frontiers

or already-balanced workload to process. We can bypass the

frontier stealing step if we can recognize these cases. To

avoid dispensable stealing, we set two threshold values t1
and t2 to activate the stealing mechanism only when: (1)
m

max
i=1

lki ≥ t1, which means we have sufficient frontiers to

steal in order to cover the overhead of FSteal algorithm.

(2)
m

max
i=1

lki −
m

min
i=1

lki ≥ t2, Similarly, generating a POSteal

also incurs overhead, since it has to enumerate the number

of GPUs and run a MILP solver for each try. Fortunately,

TABLE II: Representative graphs for benchmarking.

Abbr. Graphs Vertices Edges Diameter Domain

LJ soc-LiveJournal1 4.85M 85.7M 13 SN

OR soc-orkut 3.00M 213M 7 SN

SW soc-sinaweibo 58.7M 523M 5 SN

TW soc-twitter-2010 21.3M 530M 15 SN

CF com-freindster 65M 1.8B 32 SN

U2 uk-2002 18.5M 524M 25 WG

AR arabic-2005 22.7M 1.11B 28 WG

IT it-2004 41M 1.15B 24 WG

U5 uk-2005 39.5M 1.57B 23 WG

WB webbase-2001 118M 1.71B 379 WG

TX roadNet-TX 1.3M 1.9M 1054 RN

CA roadNet-CA 1.9M 2.7M 849 RN

GM germany-osm 11M 12M 1277 RN

USA road-USA 23M 29M 1452 RN

EU europe-osm 50M 54M 2037 RN

Domains: SN: Social Network, WG: Web Graph, RN: Road Network.

we can bypass the OSteal algorithm with prior knowledge.

Since the OSteal is usually cost-efficient when the workload

is very sparse (e.g., only several frontiers are activated in

each worker), thus we execute Algorithm 2 only when the

previous runtime is less than t3. In GUM, t1, t2, and t3 are

tuning parameters, users can set them empirically to reduce the

overhead incurred by the FSteal and OSteal algorithms.

Example 6: Continue with Example 5, we adopt the adaptive

scheduling by triggering the stealing mechanism only when

it is worth doing. However, copying the frontiers from the

remote GPU to the local GPU and accessing the neighbors

via NVLinks may block the computation, especially when one

steals too many work items. To further reduce the overhead of

stealing, GUM can cache the status of the stolen frontiers. We

observed that the vertices with high in-degree are prone to be

activated many times since they receive more messages than

other vertices in the graph. In GUM, we call such high in-

degree vertices as hub vertices, and GUM eschews the heavy

remote memory access by caching the adjacency list of hub

vertices in advance. Previous works [43], [5] also enabled hub

vertices caching to reduce irregular memory access. We use

a bitmap to mark the cached vertices, if the stolen frontiers

exist in this bitmap, GUM will access the neighbors of these

stolen vertices locally instead of fetching data via NVLinks.

The threshold value t4 is a tunable parameter, if d−(v) > t4,

we will mark the vertex v as a hub vertex.

VI. EVALUATION

We evaluate the performance of GUM by answering the

following seven research questions:

Q1: How efficient GUM is compared to other systems?

Q2: How well does GUM scale in multi-GPU platforms?

Q3: How effective are GUM’s stealing algorithms?

Q4: How much runtime overhead does stealing introduce?

Q5: How does GUM achieve its performance?

Q6: How does GUM work on different partitioners?

Q7: How effective is the cost model in GUM?



TABLE III: The evaluation time of Gum vs. other GPU graph processing libraries.

Runtime (ms) [lower is better]

Social Network Web Graph Road Network

Alg. Lib. LJ OR SW TW CF U2 AR IT U5 WB TX CA GM USA EU

B
F

S

Gunrock 21 40 188 101 - 21 39 146 149 221 435 348 2525 3522 9088
Groute 45 34 162 135 619 47 70 74 181 99 196 221 12163 13576 30567
Gum 6 7 32 19 141 13 17 45 15 68 36 31 194 353 847

W
C

C Gunrock 50 25 274 169 914 108 423 689 713 1883 25 30 253 555 1132
Groute 14 9 273 60 166 29 64 97 76 136 1 1.3 4.5 8.6 16.9

Gum 6.8 7.5 52 27 206 19 60 77 50 117 1.5 1.5 5.7 8.9 25.9

P
R

Gunrock 143 134 2482 1011 12086 438 573 1105 1001 2804 32 42 210 441 940
Groute 3425 9858 5780 4840 21225 776 1754 3365 4906 2963 146 138 259 345 311
Gum 90 118 1166 631 11850 129 211 1512 512 661 8.7 9 22 37 75

S
S

S
P Gunrock 98 176 671 220 2296 630 564 488 921 1145 622 486 3373 5136 12669

Groute 197 207 1651 378 6755 214 285 310 400 318 517 450 13953 10253 38012
Gum 45 62 195 95 2108 207 233 285 561 566 98 90 49 694 1436

A. Experimental Setup
We compare GUM with the state-of-the-art GPU-based

graph systems using following setups:

Platform. We ran all single-node experiments on our NVIDIA

GPU systems, on a Linux server with 2.10GHz E5–2620 v2

Intel Xeon CPUs and 48 GB of main memory, equipped

with 8 NVIDIA V100 GPUs with 32 GB of global memory.

We compiled all the GPU programs using NVIDIA’s nvcc

compiler (version 10.1.0) and the -O3 flag. The measured

results in all experiments ignore the IO time.

Dataset. We chose a variety of types of graph data, some from

the social network (labeled SN), the web graph (labeled WG),

and the road network (labeled RN). For the social network, it

is characterized by a very skewed distribution of edges, usually

with some “hot” vertices having many incoming edges. For the

road network, it has a very long diameter and fewer outgoing

edges per vertex. And the web graph lies somewhere in middle.

As shown in Table II, we chose 15 representative graphs to

analyze the performance of GUM.

Baseline. GUM was compared with several state-of-the-art

programmable GPU-based graph processing frameworks/li-

braries. According to the latest results in [44], [7], [12],

Gunrock [6] and Groute [12] are available and delivered

relatively better performance than the others owing to its

continuous evolution. We use four typical graph applications

to benchmark GUM, Gunrock, and Groute: breadth-first

search (BFS), connected components (WCC), PageRank

(PR), and single-source shortest path (SSSP) algorithms. All

three systems are evaluated based on a random partitioner to

eliminate the influence of graph partitioning methods.

B. Main Results

Exp-1: Effectiveness. To answer Q1, we compare GUM

against Gunrock and Groute using 8 GPUs to highlight the

overall performance, Table III shows the result. For all dataset

used, GUM significantly outperforms other GPU-based graph

processing systems using 8 GPUs, especially for the graph

traversal applications like BFS and SSSP. Groute runs faster

in WCC on road networks because it uses an asynchronous

model which has advantages on long-diameter graphs [45].

The reasons that the GUM performs better than Gunrock and

Groute are (1) they do not take full advantage of NVLink,

and their communication implementations are not aware of

the asymmetry of the communication topology. As described

in Example 1, graph traversal applications like BFS and SSSP

may suffer severe DLB problem in various graph datasets.

However, both Gunrock and Groute ignore the NVLink

topology and the dynamic load-imbalance, while GUM enables

stealing thus avoiding GPU starvation (Section III). We will

discuss it in detail in Exp-2. (2) GUM achieves more speedups

in road-network graphs because such graphs have long-

distance which are prone to have more iterations, the iterations

near the convergence have insufficient workloads to cover the

synchronization overhead, thus they suffer more from the LT

problem. GUM can shrink the communication group size with

the help of the OSteal algorithm (Section IV), which can

improve the performance significantly in road-network graphs.

Exp-2: Scalability. To answer Q2, we compare GUM with

Gunrock and Groute on five large graphs listed in Table II.

We run four graph benchmarks on a server with 8 NVIDIA

V100 to investigate strong scalability.

Runtime Breakdown. Figure 6 shows the runtime breakdown

of GUM with different numbers of GPUs: The computation

time is the GPU kernel time, such as expanding the neighbors

of frontiers and updating vertex data for active vertices. The

communication time comes from data motivation between

GPUs, as well as the GPU starvation time for waiting for

the stragglers. The serialization time is the communication

overhead, including packing irregular and scattered memory

access patterns into a consecutive one to facilitate the data

transfer over NVLink and PCIe. The overhead time measures

the auxiliary processes such as the conversion from global

vertex ID to local vertex ID, and the extra computation

introduced by FSteal and OSteal algorithms. GUM

achieves nearly linear speedups on BFS, SSSP, and PR

algorithms, up to 6.5×, 5.3×, and 7.5× speedups (8 GPUS

over 1 GPU) respectively. The scalability of GUM mainly

comes from: (1) the scalability is mainly bound by the

computation time, thus the load-balance which GUM solved
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Fig. 6: The runtime breakdown and strong scalability of GUM.

with FSteal is the key to achieving high scalability. (2)

GUM enables several communication optimizations such as

early message aggregation and hub caching (Section V),

which reduce the communication and serialization cost.

Comparison with Gunrock and Groute. Figure 7 shows the

strong scalability compared with Gunrock and Groute. Both

Gunrock and Groute leverage the NVLinks to accelerate the

communication. However, Groute has a special design that

only uses a ring from the NVLink topology as shown in

Figure 2. We observed that Groute with an odd number of

GPUs performs much worse than itself with an even number

of GPUs because an odd number of GPUs are hard to form

a ring in NVLink topology. Hence, Groute runs faster in a

single GPU because of the asynchronous model, but it is hard

to scale out. Gunrock and GUM are both BSP-based, however,

Gunrock’s implementation enabled many algorithm-specific

optimizations, thus the comparison is more beneficial for

them. For SSSP algorithm, Gunrock’s implementation adopts

an algorithm-specific “near-far” optimization [46] that runs

faster on a single GPU while hard to scale out to multi-GPU.

GUM does not rely on algorithm-specific optimizations, since

the optimizations of specific algorithms do not fall into the

ambit of GUM. Thanks to the frontier stealing and ownership

stealing, GUM keeps its scalability from 1 GPU to 8 GPUs.

C. Micro Benchmark

Exp-3: Efficiency of FSteal. We show the effectiveness and

overhead of FSteal in following:

Effectiveness. To answer Q3 about FSteal, we show an

example of frontier stealing efficiency in Figure 8. We run

the SSSP algorithm on graph sinaweibo. By turning on/off

the frontiers stealing, we recorded the computation time of

the critical iterations i.e., iterations #5 and #6, which take

43 ms and 38 ms respectively. Without the FSteal, we

can see the stragglers are GPU4 and GPU5, the faster GPU0

and GPU1 have to wait until GPU4 and GPU5 finish, wasting

72% and 67% of their cycles. By enabling the FSteal,

wasted cycles can be leveraged to accelerate the stragglers.

Thus it reduces the end-to-end time of iterations #5 and #6

to 32 ms and 29 ms respectively. The stall time is reduced

to 4%, which means the cores are almost busy all the time.

GUM can achieve good balance quality because it solves the

problem following the estimate-and-reassign style that decides

the workload from a holistic view in advance, while general

work stealing methods often follow the peek-and-grap style

which relies on the unpredictable behaviors of each worker

at runtime. We also observed a counter-intuitive phenomenon

that GPU7 steals others while itself was stolen. This is

because of the asymmetry of the NVLink topology that there

may be no links between some workers, while GPU7 works as

a bridge to balance the faster worker and the slower worker.

Overhead. To answer Q4 about FSteal, we report the over-

head of the FSteal algorithm in Table IV. In this setting, we

run the SSSP algorithm on the two graphs uk-2002 and web-

base. Then we show the runtime of the overhead, as well as the

ratio between the reduced time with FSteal and the overhead

time. For example, we can save 100 ms in the SSSP algorithm

on uk-2002 with 8 GPUs. The overhead here includes copying

the status of stolen frontiers, the inference of the learning

model, and the runtime of FSteal algorithm. The overhead

of FSteal in GUM was affordable, as it cost at most 13 ms

of total runtime. This is because the feature vector can be col-

lected efficiently without too much computation. As described

in Section III, features can be collected with a scan over active

vertices rather than edges. For example, the average degree can

be easily obtained by averaging the degree of each frontier.

As a reward, we can reduce 25.6× starvation time on average

compared with the overhead time, which is worthwhile.

Exp-4: Efficiency of OSteal. We show the effectiveness and

overhead of OSteal in following:

Effectiveness. To answer Q3 about OSteal, we show the

switching process of the SSSP algorithm on two graphs (web-

base and USA) in Figure 9. webbase is a typical web graph

that has skewed vertices which hold excessive edges, and a

long diameter which requires more iterations to propagate

messages in the whole graph. The OSteal here can shrink
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Fig. 7: The strong scalability of GUM, Gunrock, and Groute.

Fig. 8: The load balance effectiveness of frontier stealing.

the communication group size n to reduce the synchronization

overhead as described in Section IV. At iteration #5 ∼ #20

of the webbase, the skewed vertices can activate numerous

frontiers which may lead to the DLB problem that falls

in the ambit of FSteal. At iteration #141, the OSteal

shrinks n from 8 to 6, and further shrinks n to 4 at iteration

#162, finally shrinks it to 1 at iteration #190. Reducing

the synchronization overhead in the last 300 iterations, it

improves the performance by 11 %. The OSteal performs

better in road networks like USA, which takes 6446 iterations

to converge. By shrinking the n to 2 at #232 and to 1 at

#4314, OSteal achieves 3.2× speedups. The reason behind

these behaviors is that the synchronization time becomes a

dominant factor when the LT problem happens. Although the

synchronization time is below 1 ms, the accumulated overhead

of 6000+ iterations in the USA graph may be nonnegligible.

Actually, in such a situation, only several vertices are

activated and some GPU even has no work to do. With the

help of Algorithm 2, the OSteal is enabled to reduce such

synchronization overhead at the cost of increasing computation

workload per GPU. This explains why the runtime increases

slightly when n becomes 2 in the USA dataset. Nevertheless,

the runtime of n = 2 is still less than the runtime of n = 8.

Overhead. To answer Q4 about OSteal, we report the

overhead of OSteal algorithm in Table IV. In this setting,

we run an SSSP algorithm on two graph uk-2002 and

webbase. Then we show the runtime of the overhead, as

well as the ratio between the reduced time with OSteal

and the overhead time. The overhead comes from generating

the OSteal policy based on reduction tree, and migrating

the residual frontiers from victims. We observed that the

overhead increases when the number of GPUs increases

because the search space is larger thus we have to do more

times synchronization in such a situation. Graph traversal

algorithms on social graphs like uk-2002 usually converge
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Fig. 9: The effectiveness of ownership stealing.

Fig. 10: The incremental speedups of optimizations in GUM.

quickly and thus are not bothered by the LT problem, hench

the benefit of OSteal is not that much compared with

road networks. Nevertheless, the overhead of OSteal is

usually less than 6 ms, meanwhile, we can reduce 17×
synchronization time on average at the cost of this overhead.

Exp-5: Incremental speedups. To answer Q5, we illustrate

the incremental speedups of a scale-free graph (soc-orkut) and

a long-diameter graph (road-USA) in Figure 10. We used Gun-

rock as the baseline of each algorithm. We first run GUM on a

single GPU without any optimization, then add optimizations

one by one to study their contribution. In one GPU, the results

show that the GUM baseline delivers a similar performance

to that of the Gunrock implementation. The opt means the

common intra-GPU optimizations which are both enabled in

Gunrock and GUM, which is orthogonal with our work stealing

techniques. Without FSteal and OSteal, we can observe

that most of applications of GUM deliver similar performance

compared with Gunrock and Groute. Therefore, the superiority

of GUM in performance over Gunrock is mainly owing to

the work stealing. Moreover, the importance of the FSteal

algorithm on performance improvement varied from algorithm

to algorithm. For traversal-based algorithms such as BFS and

SSSP, the stealing method yielded an approximately 3.2×
bump in performance, while for the PR, the workload does not

change in each iteration, thus the effectiveness of our stealing

is limited. The ownership stealing reduced the synchronization

time, which is the bottleneck of road network graphs.

TABLE IV: The overhead of work stealing. [Cost (ms)]

Frontier stealing Ownership stealing

uk-2002 webbase uk-2002 webbase

GPUs Cost Ratio Cost Ratio Cost Ratio Cost Ratio

2 7 20× 17 31× 2.2 7× 3 26×
4 6 19× 13 38× 4 9× 4 32×
8 4 25× 11 22× 5 5× 6 23×
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Fig. 11: The performance of GUM on different partitioner.

TABLE V: Accuracy and training time of the cost model.

Learning model RMSRE Training time(s) Slowdown

Linear regression 26.7 11.1 0.54
Polynomial regression 0.33 21.7 0.93
SVR 0.21 192.3 0.94
Decision tree 0.42 25.1 0.88

Exp-6: Partitioner To answer Q6, we plot the runtime of

GUM on different partitioners with or without work stealing,

as shown in Figure 11. We evaluate three different types of

graph partitioners: (1) seg is a locality-aware partitioner

that tries to put adjacent vertices in one partition as well as

balance the edges on each partition. (2) random is a trivial

partitioner that assigns vertices randomly. (3) metis [47] is

a well-known graph partitioner that minimize the edge-cut

between different partitions. +S means that stealing is

enabled. We report the performance of SSSP algorithm on

OR, U2, and LJ. We observed that our stealing method can

achieve 1.25∼1.63×, 1.24∼2.29×, 1.19∼1.60× on seg,

random and metis respectively. For different graphs and

different applications, the optimal graph partitioner may vary.

GUM has to spend more time processing the stolen vertices

under a bad partitioning scheme like random. However,

seg and metis are not always the optimal one, FSteal

and OSteal allow us to rectify the workload distribution in

a suboptimal partitioning scheme.

Exp-7: Learning accuracy and effect. To answer Q7, we

try different learning models to investigate their effect. We

set the degree=4 for polynomial regression, and use a rbf

kernel for SVM regression (SVR). We use RMSRE [36] as a

metric to show the difference between the exact and estimated

values of g(Wi). To figure out how the learning model affects

the final performance, we run an SSSP algorithm two times

and use the exact values of g(Wi) in FSteal for the optimal

performance, and compute the slowdown if we use the

estimated version. As shown in Table V, we observed that

replacing polynomial regression with a more sophisticated

learning model does reduce the loss but it requires longer

training time, and only provides limited performance gain

(from 0.93 to 0.94). This is because that the cost model

also considers the bandwidth (h(Wi)) and the FSteal

algorithm has already performed approximations to generate

PFSteal. Considering the cost-efficiency, GUM chooses

polynomial regression as our learning model.

VII. RELATED WORK

We summarize the related work to clarify common

features with other work and highlight GUM’s superiority in

implementing highly efficient graph analytics.

Many GPU-based graph programming frameworks have

achieved high performance on a single GPU. Gunrock [6] in-

tegrated the multiple tuning strategies to implement a number

of graph primitives. CuSha [23] adopted the shards technique

and implemented the parallel-sliding-window algorithm to

overcome the drawbacks associated with the CSR represen-

tation. It also provided users with a familiar GAS abstraction

which was first introduced by PowerGraph[48], [14]. WS-

VR [20] used warp segmentation optimization to maximize

the warp efficiency. MultipleGraph [49] enable the transition

between the sparse mode and dense mode to adapt to different

inputs. However, these works on single-GPU optimization

are limited by the restricted GPU memory. GUM breaks the

barrier by implementing a high-scalability system to migrate

its performance to a multi-GPU platform.

Some multi-GPU graph processing frameworks have pro-

vided their solutions to achieve high-scalability. BSP-based

graph processing frameworks such as Gunrock [10] and

GraphReduce [24] adopted an edge-cut graph partition

method, migrating their single-GPU execution flow to multi-

GPU. Although Gunrock applies a lot of optimizations,

most of them are targeting the single GPU execution, such

as direction-optimization and intra-GPU communication. For

asynchronous multi-GPU graph processing frameworks such

as Tigr [50], DiGraph [51], and Groute [12], the execution

model is quite different since the asynchronous model leads

to frequent communication, which are orthogonal with GUM.

Furthermore, Groute only chooses one communication ring

from the NVLink topology to exchange messages, which

wastes the bandwidth of unselected NVLinks in modern multi-

GPU servers. GUM considers the topology of communication

without restricting the communication path, which is more

general for different platforms.

VIII. CONCLUSIONS

In this paper, we presented GUM, an efficient multi-GPU

graph analytic system with work stealing. GUM tracks the

dynamic load-balance (DLB) and long tail (LT) problems

which incur low GPU utilization in real world graph

applications. These problems are intractable even with

sophisticated graph partition technology. Thanks to the high

bandwidth and low latency of NVLinks, we can rethink the

work stealing based on the remote direct memory accessing.

For the DLB problem, we introduce the frontier stealing

algorithm that formulates the DLB problem into a MILP

problem, thus it can balance the workload in each GPU

with the awareness of asymmetric NVLink topology. For the

LT problem, we introduce the ownership stealing algorithm

that can adaptively change the communication group to

trade off between parallelism and synchronization overhead.

Experimental results show that GUM effectively reduces the

communication time and hence improves the GPU utilization

and scalability when processing large graphs. We believe our

GUM design may also benefit other distributed applications

or asymmetric link-topology clusters.



REFERENCES

[1] S. Brin and L. Page, “Reprint of: The anatomy of a large-scale
hypertextual web search engine,” Computer networks, vol. 56, no. 18,
pp. 3825–3833, 2012.

[2] J. Domke, T. Hoefler, and W. E. Nagel, “Deadlock-free oblivious
routing for arbitrary topologies,” in Parallel & Distributed Processing

Symposium (IPDPS), 2011 IEEE International. IEEE, 2011, pp. 616–
627.
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