Source code for networkx.generators.internet_as_graphs
"""Generates graphs resembling the Internet Autonomous System network"""importnetworkxasnxfromnetworkx.utilsimportpy_random_state__all__=["random_internet_as_graph"]defuniform_int_from_avg(a,m,seed):"""Pick a random integer with uniform probability. Returns a random integer uniformly taken from a distribution with minimum value 'a' and average value 'm', X~U(a,b), E[X]=m, X in N where b = 2*m - a. Notes ----- p = (b-floor(b))/2 X = X1 + X2; X1~U(a,floor(b)), X2~B(p) E[X] = E[X1] + E[X2] = (floor(b)+a)/2 + (b-floor(b))/2 = (b+a)/2 = m """frommathimportfloorassertm>=ab=2*m-ap=(b-floor(b))/2X1=int(round(seed.random()*(floor(b)-a)+a))ifseed.random()<p:X2=1else:X2=0returnX1+X2defchoose_pref_attach(degs,seed):"""Pick a random value, with a probability given by its weight. Returns a random choice among degs keys, each of which has a probability proportional to the corresponding dictionary value. Parameters ---------- degs: dictionary It contains the possible values (keys) and the corresponding probabilities (values) seed: random state Returns ------- v: object A key of degs or None if degs is empty """iflen(degs)==0:returnNones=sum(degs.values())ifs==0:returnseed.choice(list(degs.keys()))v=seed.random()*snodes=list(degs.keys())i=0acc=degs[nodes[i]]whilev>acc:i+=1acc+=degs[nodes[i]]returnnodes[i]classAS_graph_generator:"""Generates random internet AS graphs."""def__init__(self,n,seed):"""Initializes variables. Immediate numbers are taken from [1]. Parameters ---------- n: integer Number of graph nodes seed: random state Indicator of random number generation state. See :ref:`Randomness<randomness>`. Returns ------- GG: AS_graph_generator object References ---------- [1] A. Elmokashfi, A. Kvalbein and C. Dovrolis, "On the Scalability of BGP: The Role of Topology Growth," in IEEE Journal on Selected Areas in Communications, vol. 28, no. 8, pp. 1250-1261, October 2010. """self.seed=seedself.n_t=min(n,int(round(self.seed.random()*2+4)))# num of T nodesself.n_m=int(round(0.15*n))# number of M nodesself.n_cp=int(round(0.05*n))# number of CP nodesself.n_c=max(0,n-self.n_t-self.n_m-self.n_cp)# number of C nodesself.d_m=2+(2.5*n)/10000# average multihoming degree for M nodesself.d_cp=2+(1.5*n)/10000# avg multihoming degree for CP nodesself.d_c=1+(5*n)/100000# average multihoming degree for C nodesself.p_m_m=1+(2*n)/10000# avg num of peer edges between M and Mself.p_cp_m=0.2+(2*n)/10000# avg num of peer edges between CP, Mself.p_cp_cp=0.05+(2*n)/100000# avg num of peer edges btwn CP, CPself.t_m=0.375# probability M's provider is Tself.t_cp=0.375# probability CP's provider is Tself.t_c=0.125# probability C's provider is Tdeft_graph(self):"""Generates the core mesh network of tier one nodes of a AS graph. Returns ------- G: Networkx Graph Core network """self.G=nx.Graph()foriinrange(self.n_t):self.G.add_node(i,type="T")forrinself.regions:self.regions[r].add(i)forjinself.G.nodes():ifi!=j:self.add_edge(i,j,"peer")self.customers[i]=set()self.providers[i]=set()returnself.Gdefadd_edge(self,i,j,kind):ifkind=="transit":customer=str(i)else:customer="none"self.G.add_edge(i,j,type=kind,customer=customer)defchoose_peer_pref_attach(self,node_list):"""Pick a node with a probability weighted by its peer degree. Pick a node from node_list with preferential attachment computed only on their peer degree """d={}forninnode_list:d[n]=self.G.nodes[n]["peers"]returnchoose_pref_attach(d,self.seed)defchoose_node_pref_attach(self,node_list):"""Pick a node with a probability weighted by its degree. Pick a node from node_list with preferential attachment computed on their degree """degs=dict(self.G.degree(node_list))returnchoose_pref_attach(degs,self.seed)defadd_customer(self,i,j):"""Keep the dictionaries 'customers' and 'providers' consistent."""self.customers[j].add(i)self.providers[i].add(j)forzinself.providers[j]:self.customers[z].add(i)self.providers[i].add(z)defadd_node(self,i,kind,reg2prob,avg_deg,t_edge_prob):"""Add a node and its customer transit edges to the graph. Parameters ---------- i: object Identifier of the new node kind: string Type of the new node. Options are: 'M' for middle node, 'CP' for content provider and 'C' for customer. reg2prob: float Probability the new node can be in two different regions. avg_deg: float Average number of transit nodes of which node i is customer. t_edge_prob: float Probability node i establish a customer transit edge with a tier one (T) node Returns ------- i: object Identifier of the new node """regs=1# regions in which node residesifself.seed.random()<reg2prob:# node is in two regionsregs=2node_options=set()self.G.add_node(i,type=kind,peers=0)self.customers[i]=set()self.providers[i]=set()self.nodes[kind].add(i)forrinself.seed.sample(list(self.regions),regs):node_options=node_options.union(self.regions[r])self.regions[r].add(i)edge_num=uniform_int_from_avg(1,avg_deg,self.seed)t_options=node_options.intersection(self.nodes["T"])m_options=node_options.intersection(self.nodes["M"])ifiinm_options:m_options.remove(i)d=0whiled<edge_numand(len(t_options)>0orlen(m_options)>0):iflen(m_options)==0or(len(t_options)>0andself.seed.random()<t_edge_prob):# add edge to a T nodej=self.choose_node_pref_attach(t_options)t_options.remove(j)else:j=self.choose_node_pref_attach(m_options)m_options.remove(j)self.add_edge(i,j,"transit")self.add_customer(i,j)d+=1returnidefadd_m_peering_link(self,m,to_kind):"""Add a peering link between two middle tier (M) nodes. Target node j is drawn considering a preferential attachment based on other M node peering degree. Parameters ---------- m: object Node identifier to_kind: string type for target node j (must be always M) Returns ------- success: boolean """# candidates are of type 'M' and are not customers of mnode_options=self.nodes["M"].difference(self.customers[m])# candidates are not providers of mnode_options=node_options.difference(self.providers[m])# remove selfifminnode_options:node_options.remove(m)# remove candidates we are already connected toforjinself.G.neighbors(m):ifjinnode_options:node_options.remove(j)iflen(node_options)>0:j=self.choose_peer_pref_attach(node_options)self.add_edge(m,j,"peer")self.G.nodes[m]["peers"]+=1self.G.nodes[j]["peers"]+=1returnTrueelse:returnFalsedefadd_cp_peering_link(self,cp,to_kind):"""Add a peering link to a content provider (CP) node. Target node j can be CP or M and it is drawn uniformely among the nodes belonging to the same region as cp. Parameters ---------- cp: object Node identifier to_kind: string type for target node j (must be M or CP) Returns ------- success: boolean """node_options=set()forrinself.regions:# options include nodes in the same region(s)ifcpinself.regions[r]:node_options=node_options.union(self.regions[r])# options are restricted to the indicated kind ('M' or 'CP')node_options=self.nodes[to_kind].intersection(node_options)# remove selfifcpinnode_options:node_options.remove(cp)# remove nodes that are cp's providersnode_options=node_options.difference(self.providers[cp])# remove nodes we are already connected toforjinself.G.neighbors(cp):ifjinnode_options:node_options.remove(j)iflen(node_options)>0:j=self.seed.sample(list(node_options),1)[0]self.add_edge(cp,j,"peer")self.G.nodes[cp]["peers"]+=1self.G.nodes[j]["peers"]+=1returnTrueelse:returnFalsedefgraph_regions(self,rn):"""Initializes AS network regions. Parameters ---------- rn: integer Number of regions """self.regions={}foriinrange(rn):self.regions["REG"+str(i)]=set()defadd_peering_links(self,from_kind,to_kind):"""Utility function to add peering links among node groups."""peer_link_method=Noneiffrom_kind=="M":peer_link_method=self.add_m_peering_linkm=self.p_m_miffrom_kind=="CP":peer_link_method=self.add_cp_peering_linkifto_kind=="M":m=self.p_cp_melse:m=self.p_cp_cpforiinself.nodes[from_kind]:num=uniform_int_from_avg(0,m,self.seed)for_inrange(num):peer_link_method(i,to_kind)defgenerate(self):"""Generates a random AS network graph as described in [1]. Returns ------- G: Graph object Notes ----- The process steps are the following: first we create the core network of tier one nodes, then we add the middle tier (M), the content provider (CP) and the customer (C) nodes along with their transit edges (link i,j means i is customer of j). Finally we add peering links between M nodes, between M and CP nodes and between CP node couples. For a detailed description of the algorithm, please refer to [1]. References ---------- [1] A. Elmokashfi, A. Kvalbein and C. Dovrolis, "On the Scalability of BGP: The Role of Topology Growth," in IEEE Journal on Selected Areas in Communications, vol. 28, no. 8, pp. 1250-1261, October 2010. """self.graph_regions(5)self.customers={}self.providers={}self.nodes={"T":set(),"M":set(),"CP":set(),"C":set()}self.t_graph()self.nodes["T"]=set(list(self.G.nodes()))i=len(self.nodes["T"])for_inrange(self.n_m):self.nodes["M"].add(self.add_node(i,"M",0.2,self.d_m,self.t_m))i+=1for_inrange(self.n_cp):self.nodes["CP"].add(self.add_node(i,"CP",0.05,self.d_cp,self.t_cp))i+=1for_inrange(self.n_c):self.nodes["C"].add(self.add_node(i,"C",0,self.d_c,self.t_c))i+=1self.add_peering_links("M","M")self.add_peering_links("CP","M")self.add_peering_links("CP","CP")returnself.G
[docs]@py_random_state(1)defrandom_internet_as_graph(n,seed=None):"""Generates a random undirected graph resembling the Internet AS network Parameters ---------- n: integer in [1000, 10000] Number of graph nodes seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Returns ------- G: Networkx Graph object A randomly generated undirected graph Notes ----- This algorithm returns an undirected graph resembling the Internet Autonomous System (AS) network, it uses the approach by Elmokashfi et al. [1]_ and it grants the properties described in the related paper [1]_. Each node models an autonomous system, with an attribute 'type' specifying its kind; tier-1 (T), mid-level (M), customer (C) or content-provider (CP). Each edge models an ADV communication link (hence, bidirectional) with attributes: - type: transit|peer, the kind of commercial agreement between nodes; - customer: <node id>, the identifier of the node acting as customer ('none' if type is peer). References ---------- .. [1] A. Elmokashfi, A. Kvalbein and C. Dovrolis, "On the Scalability of BGP: The Role of Topology Growth," in IEEE Journal on Selected Areas in Communications, vol. 28, no. 8, pp. 1250-1261, October 2010. """GG=AS_graph_generator(n,seed)G=GG.generate()returnG