Graph algorithms serve as essential building blocks for a wide range of applications, such as social network analytics, routing, constructing protein network and De Bruijn graphs, and mining valuable information in RDF (Resource Description Framework) graphs. Generally, graph analytics involve propagating labels across edges or iteratively accumulating values from adjacent vertices. Existing engines in both academia and industry, like PowerGraph, Pregel, and GraphX, have paved the way. However, in the era of big data, the computational and storage complexity of sophisticated algorithms coupled with rapidly growing datasets have exhausted the limits of a single device.
»